Questions?
See the FAQ
or other info.

Polytope of Type {2,6,27}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,27}*648
if this polytope has a name.
Group : SmallGroup(648,298)
Rank : 4
Schlafli Type : {2,6,27}
Number of vertices, edges, etc : 2, 6, 81, 27
Order of s0s1s2s3 : 54
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,6,27,2} of size 1296
Vertex Figure Of :
   {2,2,6,27} of size 1296
   {3,2,6,27} of size 1944
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,2,27}*216, {2,6,9}*216
   9-fold quotients : {2,2,9}*72, {2,6,3}*72
   27-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,6,27}*1296, {2,6,54}*1296b
   3-fold covers : {2,18,27}*1944, {2,6,27}*1944a, {2,6,81}*1944, {6,6,27}*1944b
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29)(39,48)
(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(66,75)(67,76)(68,77)
(69,78)(70,79)(71,80)(72,81)(73,82)(74,83);;
s2 := ( 3,12)( 4,14)( 5,13)( 6,19)( 7,18)( 8,20)( 9,16)(10,15)(11,17)(22,23)
(24,28)(25,27)(26,29)(30,69)(31,71)(32,70)(33,66)(34,68)(35,67)(36,73)(37,72)
(38,74)(39,60)(40,62)(41,61)(42,57)(43,59)(44,58)(45,64)(46,63)(47,65)(48,78)
(49,80)(50,79)(51,75)(52,77)(53,76)(54,82)(55,81)(56,83);;
s3 := ( 3,30)( 4,32)( 5,31)( 6,37)( 7,36)( 8,38)( 9,34)(10,33)(11,35)(12,48)
(13,50)(14,49)(15,55)(16,54)(17,56)(18,52)(19,51)(20,53)(21,39)(22,41)(23,40)
(24,46)(25,45)(26,47)(27,43)(28,42)(29,44)(57,60)(58,62)(59,61)(63,64)(66,78)
(67,80)(68,79)(69,75)(70,77)(71,76)(72,82)(73,81)(74,83);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(83)!(1,2);
s1 := Sym(83)!(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29)
(39,48)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(66,75)(67,76)
(68,77)(69,78)(70,79)(71,80)(72,81)(73,82)(74,83);
s2 := Sym(83)!( 3,12)( 4,14)( 5,13)( 6,19)( 7,18)( 8,20)( 9,16)(10,15)(11,17)
(22,23)(24,28)(25,27)(26,29)(30,69)(31,71)(32,70)(33,66)(34,68)(35,67)(36,73)
(37,72)(38,74)(39,60)(40,62)(41,61)(42,57)(43,59)(44,58)(45,64)(46,63)(47,65)
(48,78)(49,80)(50,79)(51,75)(52,77)(53,76)(54,82)(55,81)(56,83);
s3 := Sym(83)!( 3,30)( 4,32)( 5,31)( 6,37)( 7,36)( 8,38)( 9,34)(10,33)(11,35)
(12,48)(13,50)(14,49)(15,55)(16,54)(17,56)(18,52)(19,51)(20,53)(21,39)(22,41)
(23,40)(24,46)(25,45)(26,47)(27,43)(28,42)(29,44)(57,60)(58,62)(59,61)(63,64)
(66,78)(67,80)(68,79)(69,75)(70,77)(71,76)(72,82)(73,81)(74,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope