Questions?
See the FAQ
or other info.

# Polytope of Type {18,6,2}

Atlas Canonical Name : {18,6,2}*648b
if this polytope has a name.
Group : SmallGroup(648,300)
Rank : 4
Schlafli Type : {18,6,2}
Number of vertices, edges, etc : 27, 81, 9, 2
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{18,6,2,2} of size 1296
{18,6,2,3} of size 1944
Vertex Figure Of :
{2,18,6,2} of size 1296
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,6,2}*216
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,6,2}*1296f
3-fold covers : {18,6,2}*1944a, {18,18,2}*1944c, {18,18,2}*1944e, {18,18,2}*1944g, {18,6,2}*1944d, {18,6,6}*1944b
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(28,56)(29,55)(30,57)(31,62)(32,61)(33,63)(34,59)(35,58)(36,60)
(37,65)(38,64)(39,66)(40,71)(41,70)(42,72)(43,68)(44,67)(45,69)(46,74)(47,73)
(48,75)(49,80)(50,79)(51,81)(52,77)(53,76)(54,78);;
s1 := ( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)(10,53)
(11,52)(12,54)(13,46)(14,48)(15,47)(16,51)(17,50)(18,49)(19,40)(20,42)(21,41)
(22,45)(23,44)(24,43)(25,38)(26,37)(27,39)(55,56)(59,60)(61,63)(64,81)(65,80)
(66,79)(67,74)(68,73)(69,75)(70,76)(71,78)(72,77);;
s2 := ( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)(22,25)
(23,26)(24,27)(28,37)(29,38)(30,39)(31,43)(32,44)(33,45)(34,40)(35,41)(36,42)
(49,52)(50,53)(51,54)(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)(62,68)
(63,69)(76,79)(77,80)(78,81);;
s3 := (82,83);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(83)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(28,56)(29,55)(30,57)(31,62)(32,61)(33,63)(34,59)(35,58)
(36,60)(37,65)(38,64)(39,66)(40,71)(41,70)(42,72)(43,68)(44,67)(45,69)(46,74)
(47,73)(48,75)(49,80)(50,79)(51,81)(52,77)(53,76)(54,78);
s1 := Sym(83)!( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)
(10,53)(11,52)(12,54)(13,46)(14,48)(15,47)(16,51)(17,50)(18,49)(19,40)(20,42)
(21,41)(22,45)(23,44)(24,43)(25,38)(26,37)(27,39)(55,56)(59,60)(61,63)(64,81)
(65,80)(66,79)(67,74)(68,73)(69,75)(70,76)(71,78)(72,77);
s2 := Sym(83)!( 1,10)( 2,11)( 3,12)( 4,16)( 5,17)( 6,18)( 7,13)( 8,14)( 9,15)
(22,25)(23,26)(24,27)(28,37)(29,38)(30,39)(31,43)(32,44)(33,45)(34,40)(35,41)
(36,42)(49,52)(50,53)(51,54)(55,64)(56,65)(57,66)(58,70)(59,71)(60,72)(61,67)
(62,68)(63,69)(76,79)(77,80)(78,81);
s3 := Sym(83)!(82,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s2*s1*s2*s1 >;

```

to this polytope