Questions?
See the FAQ
or other info.

Polytope of Type {18,3,2}

Atlas Canonical Name : {18,3,2}*648
if this polytope has a name.
Group : SmallGroup(648,301)
Rank : 4
Schlafli Type : {18,3,2}
Number of vertices, edges, etc : 54, 81, 9, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{18,3,2,2} of size 1296
{18,3,2,3} of size 1944
Vertex Figure Of :
{2,18,3,2} of size 1296
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,3,2}*216
9-fold quotients : {6,3,2}*72
27-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
2-fold covers : {18,6,2}*1296h
3-fold covers : {18,3,2}*1944a, {18,9,2}*1944c, {18,9,2}*1944d, {18,9,2}*1944i, {18,9,2}*1944j, {18,3,2}*1944b, {18,3,6}*1944
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(28,57)(29,56)(30,55)(31,63)(32,62)(33,61)(34,60)(35,59)(36,58)
(37,66)(38,65)(39,64)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,75)(47,74)
(48,73)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76);;
s1 := ( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)(10,53)
(11,52)(12,54)(13,46)(14,48)(15,47)(16,51)(17,50)(18,49)(19,40)(20,42)(21,41)
(22,45)(23,44)(24,43)(25,38)(26,37)(27,39)(55,57)(58,59)(62,63)(64,79)(65,81)
(66,80)(67,75)(68,74)(69,73)(70,77)(71,76)(72,78);;
s2 := ( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)(20,21)
(23,24)(26,27)(28,66)(29,65)(30,64)(31,69)(32,68)(33,67)(34,72)(35,71)(36,70)
(37,57)(38,56)(39,55)(40,60)(41,59)(42,58)(43,63)(44,62)(45,61)(46,75)(47,74)
(48,73)(49,78)(50,77)(51,76)(52,81)(53,80)(54,79);;
s3 := (82,83);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(83)!( 2, 3)( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)
(22,25)(23,27)(24,26)(28,57)(29,56)(30,55)(31,63)(32,62)(33,61)(34,60)(35,59)
(36,58)(37,66)(38,65)(39,64)(40,72)(41,71)(42,70)(43,69)(44,68)(45,67)(46,75)
(47,74)(48,73)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76);
s1 := Sym(83)!( 1,28)( 2,30)( 3,29)( 4,33)( 5,32)( 6,31)( 7,35)( 8,34)( 9,36)
(10,53)(11,52)(12,54)(13,46)(14,48)(15,47)(16,51)(17,50)(18,49)(19,40)(20,42)
(21,41)(22,45)(23,44)(24,43)(25,38)(26,37)(27,39)(55,57)(58,59)(62,63)(64,79)
(65,81)(66,80)(67,75)(68,74)(69,73)(70,77)(71,76)(72,78);
s2 := Sym(83)!( 1,10)( 2,12)( 3,11)( 4,13)( 5,15)( 6,14)( 7,16)( 8,18)( 9,17)
(20,21)(23,24)(26,27)(28,66)(29,65)(30,64)(31,69)(32,68)(33,67)(34,72)(35,71)
(36,70)(37,57)(38,56)(39,55)(40,60)(41,59)(42,58)(43,63)(44,62)(45,61)(46,75)
(47,74)(48,73)(49,78)(50,77)(51,76)(52,81)(53,80)(54,79);
s3 := Sym(83)!(82,83);
poly := sub<Sym(83)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1,
s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope