Questions?
See the FAQ
or other info.

Polytope of Type {3,2,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,6,3}*648
if this polytope has a name.
Group : SmallGroup(648,555)
Rank : 5
Schlafli Type : {3,2,6,3}
Number of vertices, edges, etc : 3, 3, 18, 27, 9
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,2,6,3,2} of size 1296
Vertex Figure Of :
   {2,3,2,6,3} of size 1296
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,6,3}*216
   9-fold quotients : {3,2,2,3}*72
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,2,6,6}*1296a, {6,2,6,3}*1296
   3-fold covers : {3,2,6,9}*1944a, {9,2,6,3}*1944, {3,2,6,9}*1944b, {3,2,6,9}*1944c, {3,2,6,9}*1944d, {3,2,6,3}*1944, {3,2,18,3}*1944, {3,6,6,3}*1944a
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 7, 8)( 9,10)(11,12);;
s3 := ( 5, 9)( 6, 7)( 8,10);;
s4 := ( 4, 5)( 7,11)( 8,12);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(12)!(2,3);
s1 := Sym(12)!(1,2);
s2 := Sym(12)!( 7, 8)( 9,10)(11,12);
s3 := Sym(12)!( 5, 9)( 6, 7)( 8,10);
s4 := Sym(12)!( 4, 5)( 7,11)( 8,12);
poly := sub<Sym(12)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3 >; 
 

to this polytope