Questions?
See the FAQ
or other info.

Polytope of Type {6,2,28}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,28}*672
if this polytope has a name.
Group : SmallGroup(672,1141)
Rank : 4
Schlafli Type : {6,2,28}
Number of vertices, edges, etc : 6, 6, 28, 28
Order of s0s1s2s3 : 84
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,2,28,2} of size 1344
Vertex Figure Of :
   {2,6,2,28} of size 1344
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,28}*336, {6,2,14}*336
   3-fold quotients : {2,2,28}*224
   4-fold quotients : {3,2,14}*168, {6,2,7}*168
   6-fold quotients : {2,2,14}*112
   7-fold quotients : {6,2,4}*96
   8-fold quotients : {3,2,7}*84
   12-fold quotients : {2,2,7}*56
   14-fold quotients : {3,2,4}*48, {6,2,2}*48
   21-fold quotients : {2,2,4}*32
   28-fold quotients : {3,2,2}*24
   42-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,2,28}*1344, {6,4,28}*1344, {6,2,56}*1344
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := ( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)(27,28)
(29,32)(30,31)(33,34);;
s3 := ( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)(22,25)
(24,33)(26,30)(28,31)(32,34);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(34)!(3,4)(5,6);
s1 := Sym(34)!(1,5)(2,3)(4,6);
s2 := Sym(34)!( 8, 9)(10,11)(13,16)(14,15)(17,18)(19,20)(21,24)(22,23)(25,26)
(27,28)(29,32)(30,31)(33,34);
s3 := Sym(34)!( 7,13)( 8,10)( 9,19)(11,21)(12,15)(14,17)(16,27)(18,29)(20,23)
(22,25)(24,33)(26,30)(28,31)(32,34);
poly := sub<Sym(34)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope