Questions?
See the FAQ
or other info.

Polytopes for Group SmallGroup(672,1254)

This page is part of the Atlas of Small Regular Polytopes
Nondegenerate Polytopes :
  1. {3,8}*672a
  2. {3,8}*672b
  3. {3,14}*672
  4. {4,6}*672a
  5. {4,6}*672b
  6. {4,6}*672c
  7. {4,7}*672
  8. {4,8}*672a
  9. {4,8}*672b
  10. {4,8}*672c
  11. {4,8}*672d
  12. {4,8}*672e
  13. {4,8}*672f
  14. {4,14}*672a
  15. {4,14}*672b
  16. {6,4}*672a
  17. {6,4}*672b
  18. {6,4}*672c
  19. {6,6}*672a
  20. {6,6}*672b
  21. {6,6}*672c
  22. {6,7}*672a
  23. {6,7}*672b
  24. {6,8}*672a
  25. {6,8}*672b
  26. {6,8}*672c
  27. {6,8}*672d
  28. {6,8}*672e
  29. {6,8}*672f
  30. {6,8}*672g
  31. {6,8}*672h
  32. {6,8}*672i
  33. {6,8}*672j
  34. {6,14}*672a
  35. {6,14}*672b
  36. {7,4}*672
  37. {7,6}*672a
  38. {7,6}*672b
  39. {7,8}*672a
  40. {7,8}*672b
  41. {7,14}*672
  42. {8,3}*672a
  43. {8,3}*672b
  44. {8,4}*672a
  45. {8,4}*672b
  46. {8,4}*672c
  47. {8,4}*672d
  48. {8,4}*672e
  49. {8,4}*672f
  50. {8,6}*672a
  51. {8,6}*672b
  52. {8,6}*672c
  53. {8,6}*672d
  54. {8,6}*672e
  55. {8,6}*672f
  56. {8,6}*672g
  57. {8,6}*672h
  58. {8,6}*672i
  59. {8,6}*672j
  60. {8,7}*672a
  61. {8,7}*672b
  62. {8,8}*672a
  63. {8,8}*672b
  64. {8,8}*672c
  65. {8,8}*672d
  66. {8,8}*672e
  67. {8,8}*672f
  68. {8,14}*672a
  69. {8,14}*672b
  70. {8,14}*672c
  71. {8,14}*672d
  72. {14,3}*672
  73. {14,4}*672a
  74. {14,4}*672b
  75. {14,6}*672a
  76. {14,6}*672b
  77. {14,7}*672
  78. {14,8}*672a
  79. {14,8}*672b
  80. {14,8}*672c
  81. {14,8}*672d


Degenerate Polytopes :
  1. {2,3,7}*672
  2. {2,3,8}*672a
  3. {2,3,8}*672b
  4. {2,4,6}*672
  5. {2,4,7}*672
  6. {2,4,8}*672a
  7. {2,4,8}*672b
  8. {2,6,4}*672
  9. {2,6,6}*672
  10. {2,6,7}*672
  11. {2,6,8}*672a
  12. {2,6,8}*672b
  13. {2,7,3}*672
  14. {2,7,4}*672
  15. {2,7,6}*672
  16. {2,7,7}*672
  17. {2,7,8}*672a
  18. {2,7,8}*672b
  19. {2,8,3}*672a
  20. {2,8,3}*672b
  21. {2,8,4}*672a
  22. {2,8,4}*672b
  23. {2,8,6}*672a
  24. {2,8,6}*672b
  25. {2,8,7}*672a
  26. {2,8,7}*672b
  27. {2,8,8}*672a
  28. {2,8,8}*672b
  29. {3,7,2}*672
  30. {3,8,2}*672a
  31. {3,8,2}*672b
  32. {4,6,2}*672
  33. {4,7,2}*672
  34. {4,8,2}*672a
  35. {4,8,2}*672b
  36. {6,4,2}*672
  37. {6,6,2}*672
  38. {6,7,2}*672
  39. {6,8,2}*672a
  40. {6,8,2}*672b
  41. {7,3,2}*672
  42. {7,4,2}*672
  43. {7,6,2}*672
  44. {7,7,2}*672
  45. {7,8,2}*672a
  46. {7,8,2}*672b
  47. {8,3,2}*672a
  48. {8,3,2}*672b
  49. {8,4,2}*672a
  50. {8,4,2}*672b
  51. {8,6,2}*672a
  52. {8,6,2}*672b
  53. {8,7,2}*672a
  54. {8,7,2}*672b
  55. {8,8,2}*672a
  56. {8,8,2}*672b



Other Groups of Order 672 :
  1. SmallGroup(672,220) 1 nondegenerate polytope and 0 degenerate polytopes.
  2. SmallGroup(672,392) 2 nondegenerate polytopes and 2 degenerate polytopes.
  3. SmallGroup(672,396) 2 nondegenerate polytopes and 2 degenerate polytopes.
  4. SmallGroup(672,620) 2 nondegenerate polytopes and 0 degenerate polytopes.
  5. SmallGroup(672,947) 2 nondegenerate polytopes and 0 degenerate polytopes.
  6. SmallGroup(672,968) 0 nondegenerate polytopes and 2 degenerate polytopes.
  7. SmallGroup(672,975) 2 nondegenerate polytopes and 2 degenerate polytopes.
  8. SmallGroup(672,1054) 2 nondegenerate polytopes and 0 degenerate polytopes.
  9. SmallGroup(672,1080) 4 nondegenerate polytopes and 0 degenerate polytopes.
  10. SmallGroup(672,1086) 2 nondegenerate polytopes and 0 degenerate polytopes.
  11. SmallGroup(672,1140) 0 nondegenerate polytopes and 12 degenerate polytopes.
  12. SmallGroup(672,1141) 0 nondegenerate polytopes and 12 degenerate polytopes.
  13. SmallGroup(672,1150) 6 nondegenerate polytopes and 14 degenerate polytopes.
  14. SmallGroup(672,1235) 0 nondegenerate polytopes and 3 degenerate polytopes.
  15. SmallGroup(672,1237) 0 nondegenerate polytopes and 12 degenerate polytopes.
  16. SmallGroup(672,1254) 81 nondegenerate polytopes and 56 degenerate polytopes (this group).
  17. SmallGroup(672,1260) 10 nondegenerate polytopes and 48 degenerate polytopes.
  18. SmallGroup(672,1263) 2 nondegenerate polytopes and 18 degenerate polytopes.
  19. SmallGroup(672,1265) 1 nondegenerate polytope and 0 degenerate polytopes.
  20. SmallGroup(672,1271) 0 nondegenerate polytopes and 56 degenerate polytopes.
  21. SmallGroup(672,1279) 0 nondegenerate polytopes and 9 degenerate polytopes.