Questions?
See the FAQ
or other info.

Polytope of Type {4,42,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,42,2}*672c
if this polytope has a name.
Group : SmallGroup(672,1263)
Rank : 4
Schlafli Type : {4,42,2}
Number of vertices, edges, etc : 4, 84, 42, 2
Order of s0s1s2s3 : 42
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {4,42,2,2} of size 1344
Vertex Figure Of :
   {2,4,42,2} of size 1344
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,21,2}*336
   7-fold quotients : {4,6,2}*96b
   14-fold quotients : {4,3,2}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,42,2}*1344
Permutation Representation (GAP) :
s0 := (  1, 87)(  2, 88)(  3, 85)(  4, 86)(  5, 91)(  6, 92)(  7, 89)(  8, 90)
(  9, 95)( 10, 96)( 11, 93)( 12, 94)( 13, 99)( 14,100)( 15, 97)( 16, 98)
( 17,103)( 18,104)( 19,101)( 20,102)( 21,107)( 22,108)( 23,105)( 24,106)
( 25,111)( 26,112)( 27,109)( 28,110)( 29,115)( 30,116)( 31,113)( 32,114)
( 33,119)( 34,120)( 35,117)( 36,118)( 37,123)( 38,124)( 39,121)( 40,122)
( 41,127)( 42,128)( 43,125)( 44,126)( 45,131)( 46,132)( 47,129)( 48,130)
( 49,135)( 50,136)( 51,133)( 52,134)( 53,139)( 54,140)( 55,137)( 56,138)
( 57,143)( 58,144)( 59,141)( 60,142)( 61,147)( 62,148)( 63,145)( 64,146)
( 65,151)( 66,152)( 67,149)( 68,150)( 69,155)( 70,156)( 71,153)( 72,154)
( 73,159)( 74,160)( 75,157)( 76,158)( 77,163)( 78,164)( 79,161)( 80,162)
( 81,167)( 82,168)( 83,165)( 84,166);;
s1 := (  2,  3)(  5, 25)(  6, 27)(  7, 26)(  8, 28)(  9, 21)( 10, 23)( 11, 22)
( 12, 24)( 13, 17)( 14, 19)( 15, 18)( 16, 20)( 29, 57)( 30, 59)( 31, 58)
( 32, 60)( 33, 81)( 34, 83)( 35, 82)( 36, 84)( 37, 77)( 38, 79)( 39, 78)
( 40, 80)( 41, 73)( 42, 75)( 43, 74)( 44, 76)( 45, 69)( 46, 71)( 47, 70)
( 48, 72)( 49, 65)( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)( 55, 62)
( 56, 64)( 86, 87)( 89,109)( 90,111)( 91,110)( 92,112)( 93,105)( 94,107)
( 95,106)( 96,108)( 97,101)( 98,103)( 99,102)(100,104)(113,141)(114,143)
(115,142)(116,144)(117,165)(118,167)(119,166)(120,168)(121,161)(122,163)
(123,162)(124,164)(125,157)(126,159)(127,158)(128,160)(129,153)(130,155)
(131,154)(132,156)(133,149)(134,151)(135,150)(136,152)(137,145)(138,147)
(139,146)(140,148);;
s2 := (  1,145)(  2,148)(  3,147)(  4,146)(  5,141)(  6,144)(  7,143)(  8,142)
(  9,165)( 10,168)( 11,167)( 12,166)( 13,161)( 14,164)( 15,163)( 16,162)
( 17,157)( 18,160)( 19,159)( 20,158)( 21,153)( 22,156)( 23,155)( 24,154)
( 25,149)( 26,152)( 27,151)( 28,150)( 29,117)( 30,120)( 31,119)( 32,118)
( 33,113)( 34,116)( 35,115)( 36,114)( 37,137)( 38,140)( 39,139)( 40,138)
( 41,133)( 42,136)( 43,135)( 44,134)( 45,129)( 46,132)( 47,131)( 48,130)
( 49,125)( 50,128)( 51,127)( 52,126)( 53,121)( 54,124)( 55,123)( 56,122)
( 57, 89)( 58, 92)( 59, 91)( 60, 90)( 61, 85)( 62, 88)( 63, 87)( 64, 86)
( 65,109)( 66,112)( 67,111)( 68,110)( 69,105)( 70,108)( 71,107)( 72,106)
( 73,101)( 74,104)( 75,103)( 76,102)( 77, 97)( 78,100)( 79, 99)( 80, 98)
( 81, 93)( 82, 96)( 83, 95)( 84, 94);;
s3 := (169,170);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(170)!(  1, 87)(  2, 88)(  3, 85)(  4, 86)(  5, 91)(  6, 92)(  7, 89)
(  8, 90)(  9, 95)( 10, 96)( 11, 93)( 12, 94)( 13, 99)( 14,100)( 15, 97)
( 16, 98)( 17,103)( 18,104)( 19,101)( 20,102)( 21,107)( 22,108)( 23,105)
( 24,106)( 25,111)( 26,112)( 27,109)( 28,110)( 29,115)( 30,116)( 31,113)
( 32,114)( 33,119)( 34,120)( 35,117)( 36,118)( 37,123)( 38,124)( 39,121)
( 40,122)( 41,127)( 42,128)( 43,125)( 44,126)( 45,131)( 46,132)( 47,129)
( 48,130)( 49,135)( 50,136)( 51,133)( 52,134)( 53,139)( 54,140)( 55,137)
( 56,138)( 57,143)( 58,144)( 59,141)( 60,142)( 61,147)( 62,148)( 63,145)
( 64,146)( 65,151)( 66,152)( 67,149)( 68,150)( 69,155)( 70,156)( 71,153)
( 72,154)( 73,159)( 74,160)( 75,157)( 76,158)( 77,163)( 78,164)( 79,161)
( 80,162)( 81,167)( 82,168)( 83,165)( 84,166);
s1 := Sym(170)!(  2,  3)(  5, 25)(  6, 27)(  7, 26)(  8, 28)(  9, 21)( 10, 23)
( 11, 22)( 12, 24)( 13, 17)( 14, 19)( 15, 18)( 16, 20)( 29, 57)( 30, 59)
( 31, 58)( 32, 60)( 33, 81)( 34, 83)( 35, 82)( 36, 84)( 37, 77)( 38, 79)
( 39, 78)( 40, 80)( 41, 73)( 42, 75)( 43, 74)( 44, 76)( 45, 69)( 46, 71)
( 47, 70)( 48, 72)( 49, 65)( 50, 67)( 51, 66)( 52, 68)( 53, 61)( 54, 63)
( 55, 62)( 56, 64)( 86, 87)( 89,109)( 90,111)( 91,110)( 92,112)( 93,105)
( 94,107)( 95,106)( 96,108)( 97,101)( 98,103)( 99,102)(100,104)(113,141)
(114,143)(115,142)(116,144)(117,165)(118,167)(119,166)(120,168)(121,161)
(122,163)(123,162)(124,164)(125,157)(126,159)(127,158)(128,160)(129,153)
(130,155)(131,154)(132,156)(133,149)(134,151)(135,150)(136,152)(137,145)
(138,147)(139,146)(140,148);
s2 := Sym(170)!(  1,145)(  2,148)(  3,147)(  4,146)(  5,141)(  6,144)(  7,143)
(  8,142)(  9,165)( 10,168)( 11,167)( 12,166)( 13,161)( 14,164)( 15,163)
( 16,162)( 17,157)( 18,160)( 19,159)( 20,158)( 21,153)( 22,156)( 23,155)
( 24,154)( 25,149)( 26,152)( 27,151)( 28,150)( 29,117)( 30,120)( 31,119)
( 32,118)( 33,113)( 34,116)( 35,115)( 36,114)( 37,137)( 38,140)( 39,139)
( 40,138)( 41,133)( 42,136)( 43,135)( 44,134)( 45,129)( 46,132)( 47,131)
( 48,130)( 49,125)( 50,128)( 51,127)( 52,126)( 53,121)( 54,124)( 55,123)
( 56,122)( 57, 89)( 58, 92)( 59, 91)( 60, 90)( 61, 85)( 62, 88)( 63, 87)
( 64, 86)( 65,109)( 66,112)( 67,111)( 68,110)( 69,105)( 70,108)( 71,107)
( 72,106)( 73,101)( 74,104)( 75,103)( 76,102)( 77, 97)( 78,100)( 79, 99)
( 80, 98)( 81, 93)( 82, 96)( 83, 95)( 84, 94);
s3 := Sym(170)!(169,170);
poly := sub<Sym(170)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope