Questions?
See the FAQ
or other info.

Polytope of Type {2,2,22,2,2}

Atlas Canonical Name : {2,2,22,2,2}*704
if this polytope has a name.
Group : SmallGroup(704,1386)
Rank : 6
Schlafli Type : {2,2,22,2,2}
Number of vertices, edges, etc : 2, 2, 22, 22, 2, 2
Order of s0s1s2s3s4s5 : 22
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Self-Dual
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,22,2,2,2} of size 1408
Vertex Figure Of :
{2,2,2,22,2,2} of size 1408
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,11,2,2}*352
11-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,2,22,2,4}*1408, {2,2,22,4,2}*1408, {2,4,22,2,2}*1408, {4,2,22,2,2}*1408, {2,2,44,2,2}*1408
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26);;
s3 := ( 5, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)(22,23)
(24,26);;
s4 := (27,28);;
s5 := (29,30);;
poly := Group([s0,s1,s2,s3,s4,s5]);;

Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;

Permutation Representation (Magma) :
s0 := Sym(30)!(1,2);
s1 := Sym(30)!(3,4);
s2 := Sym(30)!( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)
(25,26);
s3 := Sym(30)!( 5, 9)( 6, 7)( 8,13)(10,11)(12,17)(14,15)(16,21)(18,19)(20,25)
(22,23)(24,26);
s4 := Sym(30)!(27,28);
s5 := Sym(30)!(29,30);
poly := sub<Sym(30)|s0,s1,s2,s3,s4,s5>;

Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;

to this polytope