Questions?
See the FAQ
or other info.

Polytope of Type {2,45,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,45,4}*720
if this polytope has a name.
Group : SmallGroup(720,397)
Rank : 4
Schlafli Type : {2,45,4}
Number of vertices, edges, etc : 2, 45, 90, 4
Order of s0s1s2s3 : 90
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,45,4,2} of size 1440
Vertex Figure Of :
   {2,2,45,4} of size 1440
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,15,4}*240
   5-fold quotients : {2,9,4}*144
   15-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,45,4}*1440, {2,90,4}*1440b, {2,90,4}*1440c
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 51)( 16, 53)( 17, 52)
( 18, 54)( 19, 59)( 20, 61)( 21, 60)( 22, 62)( 23, 55)( 24, 57)( 25, 56)
( 26, 58)( 27, 39)( 28, 41)( 29, 40)( 30, 42)( 31, 47)( 32, 49)( 33, 48)
( 34, 50)( 35, 43)( 36, 45)( 37, 44)( 38, 46)( 63,127)( 64,129)( 65,128)
( 66,130)( 67,123)( 68,125)( 69,124)( 70,126)( 71,131)( 72,133)( 73,132)
( 74,134)( 75,175)( 76,177)( 77,176)( 78,178)( 79,171)( 80,173)( 81,172)
( 82,174)( 83,179)( 84,181)( 85,180)( 86,182)( 87,163)( 88,165)( 89,164)
( 90,166)( 91,159)( 92,161)( 93,160)( 94,162)( 95,167)( 96,169)( 97,168)
( 98,170)( 99,151)(100,153)(101,152)(102,154)(103,147)(104,149)(105,148)
(106,150)(107,155)(108,157)(109,156)(110,158)(111,139)(112,141)(113,140)
(114,142)(115,135)(116,137)(117,136)(118,138)(119,143)(120,145)(121,144)
(122,146);;
s2 := (  3, 75)(  4, 76)(  5, 78)(  6, 77)(  7, 83)(  8, 84)(  9, 86)( 10, 85)
( 11, 79)( 12, 80)( 13, 82)( 14, 81)( 15, 63)( 16, 64)( 17, 66)( 18, 65)
( 19, 71)( 20, 72)( 21, 74)( 22, 73)( 23, 67)( 24, 68)( 25, 70)( 26, 69)
( 27,111)( 28,112)( 29,114)( 30,113)( 31,119)( 32,120)( 33,122)( 34,121)
( 35,115)( 36,116)( 37,118)( 38,117)( 39, 99)( 40,100)( 41,102)( 42,101)
( 43,107)( 44,108)( 45,110)( 46,109)( 47,103)( 48,104)( 49,106)( 50,105)
( 51, 87)( 52, 88)( 53, 90)( 54, 89)( 55, 95)( 56, 96)( 57, 98)( 58, 97)
( 59, 91)( 60, 92)( 61, 94)( 62, 93)(123,139)(124,140)(125,142)(126,141)
(127,135)(128,136)(129,138)(130,137)(131,143)(132,144)(133,146)(134,145)
(147,175)(148,176)(149,178)(150,177)(151,171)(152,172)(153,174)(154,173)
(155,179)(156,180)(157,182)(158,181)(159,163)(160,164)(161,166)(162,165)
(169,170);;
s3 := (  3,  6)(  4,  5)(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)( 16, 17)
( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)( 32, 33)
( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)( 48, 49)
( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)( 64, 65)
( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)( 80, 81)
( 83, 86)( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)( 96, 97)
( 99,102)(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)(112,113)
(115,118)(116,117)(119,122)(120,121)(123,126)(124,125)(127,130)(128,129)
(131,134)(132,133)(135,138)(136,137)(139,142)(140,141)(143,146)(144,145)
(147,150)(148,149)(151,154)(152,153)(155,158)(156,157)(159,162)(160,161)
(163,166)(164,165)(167,170)(168,169)(171,174)(172,173)(175,178)(176,177)
(179,182)(180,181);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(182)!(1,2);
s1 := Sym(182)!(  4,  5)(  7, 11)(  8, 13)(  9, 12)( 10, 14)( 15, 51)( 16, 53)
( 17, 52)( 18, 54)( 19, 59)( 20, 61)( 21, 60)( 22, 62)( 23, 55)( 24, 57)
( 25, 56)( 26, 58)( 27, 39)( 28, 41)( 29, 40)( 30, 42)( 31, 47)( 32, 49)
( 33, 48)( 34, 50)( 35, 43)( 36, 45)( 37, 44)( 38, 46)( 63,127)( 64,129)
( 65,128)( 66,130)( 67,123)( 68,125)( 69,124)( 70,126)( 71,131)( 72,133)
( 73,132)( 74,134)( 75,175)( 76,177)( 77,176)( 78,178)( 79,171)( 80,173)
( 81,172)( 82,174)( 83,179)( 84,181)( 85,180)( 86,182)( 87,163)( 88,165)
( 89,164)( 90,166)( 91,159)( 92,161)( 93,160)( 94,162)( 95,167)( 96,169)
( 97,168)( 98,170)( 99,151)(100,153)(101,152)(102,154)(103,147)(104,149)
(105,148)(106,150)(107,155)(108,157)(109,156)(110,158)(111,139)(112,141)
(113,140)(114,142)(115,135)(116,137)(117,136)(118,138)(119,143)(120,145)
(121,144)(122,146);
s2 := Sym(182)!(  3, 75)(  4, 76)(  5, 78)(  6, 77)(  7, 83)(  8, 84)(  9, 86)
( 10, 85)( 11, 79)( 12, 80)( 13, 82)( 14, 81)( 15, 63)( 16, 64)( 17, 66)
( 18, 65)( 19, 71)( 20, 72)( 21, 74)( 22, 73)( 23, 67)( 24, 68)( 25, 70)
( 26, 69)( 27,111)( 28,112)( 29,114)( 30,113)( 31,119)( 32,120)( 33,122)
( 34,121)( 35,115)( 36,116)( 37,118)( 38,117)( 39, 99)( 40,100)( 41,102)
( 42,101)( 43,107)( 44,108)( 45,110)( 46,109)( 47,103)( 48,104)( 49,106)
( 50,105)( 51, 87)( 52, 88)( 53, 90)( 54, 89)( 55, 95)( 56, 96)( 57, 98)
( 58, 97)( 59, 91)( 60, 92)( 61, 94)( 62, 93)(123,139)(124,140)(125,142)
(126,141)(127,135)(128,136)(129,138)(130,137)(131,143)(132,144)(133,146)
(134,145)(147,175)(148,176)(149,178)(150,177)(151,171)(152,172)(153,174)
(154,173)(155,179)(156,180)(157,182)(158,181)(159,163)(160,164)(161,166)
(162,165)(169,170);
s3 := Sym(182)!(  3,  6)(  4,  5)(  7, 10)(  8,  9)( 11, 14)( 12, 13)( 15, 18)
( 16, 17)( 19, 22)( 20, 21)( 23, 26)( 24, 25)( 27, 30)( 28, 29)( 31, 34)
( 32, 33)( 35, 38)( 36, 37)( 39, 42)( 40, 41)( 43, 46)( 44, 45)( 47, 50)
( 48, 49)( 51, 54)( 52, 53)( 55, 58)( 56, 57)( 59, 62)( 60, 61)( 63, 66)
( 64, 65)( 67, 70)( 68, 69)( 71, 74)( 72, 73)( 75, 78)( 76, 77)( 79, 82)
( 80, 81)( 83, 86)( 84, 85)( 87, 90)( 88, 89)( 91, 94)( 92, 93)( 95, 98)
( 96, 97)( 99,102)(100,101)(103,106)(104,105)(107,110)(108,109)(111,114)
(112,113)(115,118)(116,117)(119,122)(120,121)(123,126)(124,125)(127,130)
(128,129)(131,134)(132,133)(135,138)(136,137)(139,142)(140,141)(143,146)
(144,145)(147,150)(148,149)(151,154)(152,153)(155,158)(156,157)(159,162)
(160,161)(163,166)(164,165)(167,170)(168,169)(171,174)(172,173)(175,178)
(176,177)(179,182)(180,181);
poly := sub<Sym(182)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s2*s1*s3*s2*s3*s2*s1*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope