Questions?
See the FAQ
or other info.

Polytope of Type {5,10,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,2,3}*720b
if this polytope has a name.
Group : SmallGroup(720,771)
Rank : 5
Schlafli Type : {5,10,2,3}
Number of vertices, edges, etc : 6, 30, 12, 3, 3
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {5,10,2,3,2} of size 1440
Vertex Figure Of :
   {2,5,10,2,3} of size 1440
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {5,5,2,3}*360
Covers (Minimal Covers in Boldface) :
   2-fold covers : {5,10,2,3}*1440, {5,10,2,6}*1440b, {10,10,2,3}*1440a, {10,10,2,3}*1440b
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);;
s1 := ( 1, 4)( 2, 7)( 3,11)( 5,10)( 6, 9)( 8,12);;
s2 := ( 2, 9)( 4,12)( 5, 7)( 6, 8);;
s3 := (14,15);;
s4 := (13,14);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s3*s4*s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!( 1, 3)( 2, 8)( 4,12)( 5, 7)( 6, 9)(10,11);
s1 := Sym(15)!( 1, 4)( 2, 7)( 3,11)( 5,10)( 6, 9)( 8,12);
s2 := Sym(15)!( 2, 9)( 4,12)( 5, 7)( 6, 8);
s3 := Sym(15)!(14,15);
s4 := Sym(15)!(13,14);
poly := sub<Sym(15)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4*s3*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s2*s1*s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s0 >; 
 

to this polytope