Questions?
See the FAQ
or other info.

Polytope of Type {6,30,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,30,2}*720a
if this polytope has a name.
Group : SmallGroup(720,813)
Rank : 4
Schlafli Type : {6,30,2}
Number of vertices, edges, etc : 6, 90, 30, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,30,2,2} of size 1440
Vertex Figure Of :
   {2,6,30,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {6,10,2}*240
   5-fold quotients : {6,6,2}*144c
   9-fold quotients : {2,10,2}*80
   10-fold quotients : {3,6,2}*72
   15-fold quotients : {6,2,2}*48
   18-fold quotients : {2,5,2}*40
   30-fold quotients : {3,2,2}*24
   45-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,60,2}*1440a, {12,30,2}*1440a, {6,30,4}*1440a
Permutation Representation (GAP) :
s0 := ( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)(20,35)
(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);;
s1 := ( 1,21)( 2,25)( 3,24)( 4,23)( 5,22)( 6,16)( 7,20)( 8,19)( 9,18)(10,17)
(11,26)(12,30)(13,29)(14,28)(15,27)(31,36)(32,40)(33,39)(34,38)(35,37)(42,45)
(43,44);;
s2 := ( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,17)(18,20)(21,27)
(22,26)(23,30)(24,29)(25,28)(31,32)(33,35)(36,42)(37,41)(38,45)(39,44)
(40,43);;
s3 := (46,47);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(47)!( 6,11)( 7,12)( 8,13)( 9,14)(10,15)(16,31)(17,32)(18,33)(19,34)
(20,35)(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40);
s1 := Sym(47)!( 1,21)( 2,25)( 3,24)( 4,23)( 5,22)( 6,16)( 7,20)( 8,19)( 9,18)
(10,17)(11,26)(12,30)(13,29)(14,28)(15,27)(31,36)(32,40)(33,39)(34,38)(35,37)
(42,45)(43,44);
s2 := Sym(47)!( 1, 2)( 3, 5)( 6,12)( 7,11)( 8,15)( 9,14)(10,13)(16,17)(18,20)
(21,27)(22,26)(23,30)(24,29)(25,28)(31,32)(33,35)(36,42)(37,41)(38,45)(39,44)
(40,43);
s3 := Sym(47)!(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 

to this polytope