Questions?
See the FAQ
or other info.

Polytope of Type {30,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,6,2}*720a
if this polytope has a name.
Group : SmallGroup(720,813)
Rank : 4
Schlafli Type : {30,6,2}
Number of vertices, edges, etc : 30, 90, 6, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {30,6,2,2} of size 1440
Vertex Figure Of :
   {2,30,6,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {10,6,2}*240
   5-fold quotients : {6,6,2}*144b
   9-fold quotients : {10,2,2}*80
   10-fold quotients : {6,3,2}*72
   15-fold quotients : {2,6,2}*48
   18-fold quotients : {5,2,2}*40
   30-fold quotients : {2,3,2}*24
   45-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {60,6,2}*1440a, {30,12,2}*1440a, {30,6,4}*1440a
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)(21,26)
(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42);;
s1 := ( 1, 7)( 2, 6)( 3,10)( 4, 9)( 5, 8)(11,12)(13,15)(16,37)(17,36)(18,40)
(19,39)(20,38)(21,32)(22,31)(23,35)(24,34)(25,33)(26,42)(27,41)(28,45)(29,44)
(30,43);;
s2 := ( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)( 6,26)( 7,27)( 8,28)( 9,29)(10,30)
(11,21)(12,22)(13,23)(14,24)(15,25)(36,41)(37,42)(38,43)(39,44)(40,45);;
s3 := (46,47);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(47)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(17,20)(18,19)
(21,26)(22,30)(23,29)(24,28)(25,27)(32,35)(33,34)(36,41)(37,45)(38,44)(39,43)
(40,42);
s1 := Sym(47)!( 1, 7)( 2, 6)( 3,10)( 4, 9)( 5, 8)(11,12)(13,15)(16,37)(17,36)
(18,40)(19,39)(20,38)(21,32)(22,31)(23,35)(24,34)(25,33)(26,42)(27,41)(28,45)
(29,44)(30,43);
s2 := Sym(47)!( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)( 6,26)( 7,27)( 8,28)( 9,29)
(10,30)(11,21)(12,22)(13,23)(14,24)(15,25)(36,41)(37,42)(38,43)(39,44)(40,45);
s3 := Sym(47)!(46,47);
poly := sub<Sym(47)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope