Questions?
See the FAQ
or other info.

Polytope of Type {6,2,2,15}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,2,2,15}*720
if this polytope has a name.
Group : SmallGroup(720,831)
Rank : 5
Schlafli Type : {6,2,2,15}
Number of vertices, edges, etc : 6, 6, 2, 15, 15
Order of s0s1s2s3s4 : 30
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,2,2,15,2} of size 1440
Vertex Figure Of :
   {2,6,2,2,15} of size 1440
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,2,15}*360
   3-fold quotients : {6,2,2,5}*240, {2,2,2,15}*240
   5-fold quotients : {6,2,2,3}*144
   6-fold quotients : {3,2,2,5}*120
   9-fold quotients : {2,2,2,5}*80
   10-fold quotients : {3,2,2,3}*72
   15-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,2,2,15}*1440, {6,4,2,15}*1440a, {6,2,2,30}*1440
Permutation Representation (GAP) :
s0 := (3,4)(5,6);;
s1 := (1,5)(2,3)(4,6);;
s2 := (7,8);;
s3 := (10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);;
s4 := ( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(23)!(3,4)(5,6);
s1 := Sym(23)!(1,5)(2,3)(4,6);
s2 := Sym(23)!(7,8);
s3 := Sym(23)!(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23);
s4 := Sym(23)!( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22);
poly := sub<Sym(23)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope