Questions?
See the FAQ
or other info.

Polytope of Type {30,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {30,6,2}*720c
if this polytope has a name.
Group : SmallGroup(720,831)
Rank : 4
Schlafli Type : {30,6,2}
Number of vertices, edges, etc : 30, 90, 6, 2
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {30,6,2,2} of size 1440
Vertex Figure Of :
   {2,30,6,2} of size 1440
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {15,6,2}*360
   3-fold quotients : {30,2,2}*240
   5-fold quotients : {6,6,2}*144c
   6-fold quotients : {15,2,2}*120
   9-fold quotients : {10,2,2}*80
   10-fold quotients : {3,6,2}*72
   15-fold quotients : {6,2,2}*48
   18-fold quotients : {5,2,2}*40
   30-fold quotients : {3,2,2}*24
   45-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {60,6,2}*1440c, {30,6,4}*1440c, {30,12,2}*1440c
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(16,31)(17,35)(18,34)
(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)(29,38)
(30,37)(47,50)(48,49)(51,56)(52,60)(53,59)(54,58)(55,57)(61,76)(62,80)(63,79)
(64,78)(65,77)(66,86)(67,90)(68,89)(69,88)(70,87)(71,81)(72,85)(73,84)(74,83)
(75,82);;
s1 := ( 1,67)( 2,66)( 3,70)( 4,69)( 5,68)( 6,62)( 7,61)( 8,65)( 9,64)(10,63)
(11,72)(12,71)(13,75)(14,74)(15,73)(16,52)(17,51)(18,55)(19,54)(20,53)(21,47)
(22,46)(23,50)(24,49)(25,48)(26,57)(27,56)(28,60)(29,59)(30,58)(31,82)(32,81)
(33,85)(34,84)(35,83)(36,77)(37,76)(38,80)(39,79)(40,78)(41,87)(42,86)(43,90)
(44,89)(45,88);;
s2 := (16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)(25,40)
(26,41)(27,42)(28,43)(29,44)(30,45)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)
(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90);;
s3 := (91,92);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(92)!( 2, 5)( 3, 4)( 6,11)( 7,15)( 8,14)( 9,13)(10,12)(16,31)(17,35)
(18,34)(19,33)(20,32)(21,41)(22,45)(23,44)(24,43)(25,42)(26,36)(27,40)(28,39)
(29,38)(30,37)(47,50)(48,49)(51,56)(52,60)(53,59)(54,58)(55,57)(61,76)(62,80)
(63,79)(64,78)(65,77)(66,86)(67,90)(68,89)(69,88)(70,87)(71,81)(72,85)(73,84)
(74,83)(75,82);
s1 := Sym(92)!( 1,67)( 2,66)( 3,70)( 4,69)( 5,68)( 6,62)( 7,61)( 8,65)( 9,64)
(10,63)(11,72)(12,71)(13,75)(14,74)(15,73)(16,52)(17,51)(18,55)(19,54)(20,53)
(21,47)(22,46)(23,50)(24,49)(25,48)(26,57)(27,56)(28,60)(29,59)(30,58)(31,82)
(32,81)(33,85)(34,84)(35,83)(36,77)(37,76)(38,80)(39,79)(40,78)(41,87)(42,86)
(43,90)(44,89)(45,88);
s2 := Sym(92)!(16,31)(17,32)(18,33)(19,34)(20,35)(21,36)(22,37)(23,38)(24,39)
(25,40)(26,41)(27,42)(28,43)(29,44)(30,45)(61,76)(62,77)(63,78)(64,79)(65,80)
(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90);
s3 := Sym(92)!(91,92);
poly := sub<Sym(92)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope