Questions?
See the FAQ
or other info.

Polytope of Type {8,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,12}*768l
if this polytope has a name.
Group : SmallGroup(768,1086324)
Rank : 3
Schlafli Type : {8,12}
Number of vertices, edges, etc : 32, 192, 48
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,6}*384e
   4-fold quotients : {8,3}*192
   8-fold quotients : {4,6}*96
   16-fold quotients : {4,3}*48, {4,6}*48b, {4,6}*48c
   32-fold quotients : {4,3}*24, {2,6}*24
   64-fold quotients : {2,3}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,124)(  2,123)(  3,122)(  4,121)(  5,128)(  6,127)(  7,126)(  8,125)
(  9,116)( 10,115)( 11,114)( 12,113)( 13,120)( 14,119)( 15,118)( 16,117)
( 17,110)( 18,109)( 19,112)( 20,111)( 21,106)( 22,105)( 23,108)( 24,107)
( 25,102)( 26,101)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31,100)( 32, 99)
( 33,156)( 34,155)( 35,154)( 36,153)( 37,160)( 38,159)( 39,158)( 40,157)
( 41,148)( 42,147)( 43,146)( 44,145)( 45,152)( 46,151)( 47,150)( 48,149)
( 49,142)( 50,141)( 51,144)( 52,143)( 53,138)( 54,137)( 55,140)( 56,139)
( 57,134)( 58,133)( 59,136)( 60,135)( 61,130)( 62,129)( 63,132)( 64,131)
( 65,188)( 66,187)( 67,186)( 68,185)( 69,192)( 70,191)( 71,190)( 72,189)
( 73,180)( 74,179)( 75,178)( 76,177)( 77,184)( 78,183)( 79,182)( 80,181)
( 81,174)( 82,173)( 83,176)( 84,175)( 85,170)( 86,169)( 87,172)( 88,171)
( 89,166)( 90,165)( 91,168)( 92,167)( 93,162)( 94,161)( 95,164)( 96,163);;
s1 := (  3,  4)(  5,  6)(  9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)( 18, 27)
( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)( 42, 80)
( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)( 50, 91)
( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)( 58, 84)
( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)( 98,104)
( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)(116,128)
(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)(132,165)
(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)(140,171)
(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)(148,192)
(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)(156,183)
(157,178)(158,177)(159,179)(160,180);;
s2 := (  1,188)(  2,186)(  3,187)(  4,185)(  5,189)(  6,191)(  7,190)(  8,192)
(  9,169)( 10,171)( 11,170)( 12,172)( 13,176)( 14,174)( 15,175)( 16,173)
( 17,183)( 18,181)( 19,184)( 20,182)( 21,178)( 22,180)( 23,177)( 24,179)
( 25,164)( 26,162)( 27,163)( 28,161)( 29,165)( 30,167)( 31,166)( 32,168)
( 33,156)( 34,154)( 35,155)( 36,153)( 37,157)( 38,159)( 39,158)( 40,160)
( 41,137)( 42,139)( 43,138)( 44,140)( 45,144)( 46,142)( 47,143)( 48,141)
( 49,151)( 50,149)( 51,152)( 52,150)( 53,146)( 54,148)( 55,145)( 56,147)
( 57,132)( 58,130)( 59,131)( 60,129)( 61,133)( 62,135)( 63,134)( 64,136)
( 65,124)( 66,122)( 67,123)( 68,121)( 69,125)( 70,127)( 71,126)( 72,128)
( 73,105)( 74,107)( 75,106)( 76,108)( 77,112)( 78,110)( 79,111)( 80,109)
( 81,119)( 82,117)( 83,120)( 84,118)( 85,114)( 86,116)( 87,113)( 88,115)
( 89,100)( 90, 98)( 91, 99)( 92, 97)( 93,101)( 94,103)( 95,102)( 96,104);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  1,124)(  2,123)(  3,122)(  4,121)(  5,128)(  6,127)(  7,126)
(  8,125)(  9,116)( 10,115)( 11,114)( 12,113)( 13,120)( 14,119)( 15,118)
( 16,117)( 17,110)( 18,109)( 19,112)( 20,111)( 21,106)( 22,105)( 23,108)
( 24,107)( 25,102)( 26,101)( 27,104)( 28,103)( 29, 98)( 30, 97)( 31,100)
( 32, 99)( 33,156)( 34,155)( 35,154)( 36,153)( 37,160)( 38,159)( 39,158)
( 40,157)( 41,148)( 42,147)( 43,146)( 44,145)( 45,152)( 46,151)( 47,150)
( 48,149)( 49,142)( 50,141)( 51,144)( 52,143)( 53,138)( 54,137)( 55,140)
( 56,139)( 57,134)( 58,133)( 59,136)( 60,135)( 61,130)( 62,129)( 63,132)
( 64,131)( 65,188)( 66,187)( 67,186)( 68,185)( 69,192)( 70,191)( 71,190)
( 72,189)( 73,180)( 74,179)( 75,178)( 76,177)( 77,184)( 78,183)( 79,182)
( 80,181)( 81,174)( 82,173)( 83,176)( 84,175)( 85,170)( 86,169)( 87,172)
( 88,171)( 89,166)( 90,165)( 91,168)( 92,167)( 93,162)( 94,161)( 95,164)
( 96,163);
s1 := Sym(192)!(  3,  4)(  5,  6)(  9, 15)( 10, 16)( 11, 14)( 12, 13)( 17, 28)
( 18, 27)( 19, 25)( 20, 26)( 21, 31)( 22, 32)( 23, 30)( 24, 29)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 70)( 38, 69)( 39, 71)( 40, 72)( 41, 79)
( 42, 80)( 43, 78)( 44, 77)( 45, 76)( 46, 75)( 47, 73)( 48, 74)( 49, 92)
( 50, 91)( 51, 89)( 52, 90)( 53, 95)( 54, 96)( 55, 94)( 56, 93)( 57, 83)
( 58, 84)( 59, 82)( 60, 81)( 61, 88)( 62, 87)( 63, 85)( 64, 86)( 97,103)
( 98,104)( 99,102)(100,101)(107,108)(109,110)(113,126)(114,125)(115,127)
(116,128)(117,121)(118,122)(119,124)(120,123)(129,167)(130,168)(131,166)
(132,165)(133,164)(134,163)(135,161)(136,162)(137,169)(138,170)(139,172)
(140,171)(141,174)(142,173)(143,175)(144,176)(145,190)(146,189)(147,191)
(148,192)(149,185)(150,186)(151,188)(152,187)(153,181)(154,182)(155,184)
(156,183)(157,178)(158,177)(159,179)(160,180);
s2 := Sym(192)!(  1,188)(  2,186)(  3,187)(  4,185)(  5,189)(  6,191)(  7,190)
(  8,192)(  9,169)( 10,171)( 11,170)( 12,172)( 13,176)( 14,174)( 15,175)
( 16,173)( 17,183)( 18,181)( 19,184)( 20,182)( 21,178)( 22,180)( 23,177)
( 24,179)( 25,164)( 26,162)( 27,163)( 28,161)( 29,165)( 30,167)( 31,166)
( 32,168)( 33,156)( 34,154)( 35,155)( 36,153)( 37,157)( 38,159)( 39,158)
( 40,160)( 41,137)( 42,139)( 43,138)( 44,140)( 45,144)( 46,142)( 47,143)
( 48,141)( 49,151)( 50,149)( 51,152)( 52,150)( 53,146)( 54,148)( 55,145)
( 56,147)( 57,132)( 58,130)( 59,131)( 60,129)( 61,133)( 62,135)( 63,134)
( 64,136)( 65,124)( 66,122)( 67,123)( 68,121)( 69,125)( 70,127)( 71,126)
( 72,128)( 73,105)( 74,107)( 75,106)( 76,108)( 77,112)( 78,110)( 79,111)
( 80,109)( 81,119)( 82,117)( 83,120)( 84,118)( 85,114)( 86,116)( 87,113)
( 88,115)( 89,100)( 90, 98)( 91, 99)( 92, 97)( 93,101)( 94,103)( 95,102)
( 96,104);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 
References : None.
to this polytope