Questions?
See the FAQ
or other info.

Polytope of Type {6,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8}*768g
if this polytope has a name.
Group : SmallGroup(768,1086329)
Rank : 3
Schlafli Type : {6,8}
Number of vertices, edges, etc : 48, 192, 64
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,4}*384a
   4-fold quotients : {6,4}*192a, {6,8}*192c
   8-fold quotients : {6,4}*96
   16-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
   32-fold quotients : {3,4}*24, {6,2}*24
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  5,  7)(  6,  8)(  9, 12)( 10, 11)( 13, 14)( 15, 16)( 17, 31)( 18, 32)
( 19, 29)( 20, 30)( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 33, 65)( 34, 66)
( 35, 67)( 36, 68)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 76)( 42, 75)
( 43, 74)( 44, 73)( 45, 78)( 46, 77)( 47, 80)( 48, 79)( 49, 95)( 50, 96)
( 51, 93)( 52, 94)( 53, 89)( 54, 90)( 55, 91)( 56, 92)( 57, 85)( 58, 86)
( 59, 87)( 60, 88)( 61, 83)( 62, 84)( 63, 81)( 64, 82)( 97, 98)( 99,100)
(101,104)(102,103)(105,107)(106,108)(113,128)(114,127)(115,126)(116,125)
(117,122)(118,121)(119,124)(120,123)(129,162)(130,161)(131,164)(132,163)
(133,168)(134,167)(135,166)(136,165)(137,171)(138,172)(139,169)(140,170)
(141,173)(142,174)(143,175)(144,176)(145,192)(146,191)(147,190)(148,189)
(149,186)(150,185)(151,188)(152,187)(153,182)(154,181)(155,184)(156,183)
(157,180)(158,179)(159,178)(160,177);;
s1 := (  1, 65)(  2, 66)(  3, 69)(  4, 70)(  5, 67)(  6, 68)(  7, 71)(  8, 72)
(  9, 82)( 10, 81)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 88)( 16, 87)
( 17, 74)( 18, 73)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 80)( 24, 79)
( 25, 90)( 26, 89)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 96)( 32, 95)
( 35, 37)( 36, 38)( 41, 50)( 42, 49)( 43, 54)( 44, 53)( 45, 52)( 46, 51)
( 47, 56)( 48, 55)( 57, 58)( 59, 62)( 60, 61)( 63, 64)( 97,161)( 98,162)
( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,178)(106,177)
(107,182)(108,181)(109,180)(110,179)(111,184)(112,183)(113,170)(114,169)
(115,174)(116,173)(117,172)(118,171)(119,176)(120,175)(121,186)(122,185)
(123,190)(124,189)(125,188)(126,187)(127,192)(128,191)(131,133)(132,134)
(137,146)(138,145)(139,150)(140,149)(141,148)(142,147)(143,152)(144,151)
(153,154)(155,158)(156,157)(159,160);;
s2 := (  1,111)(  2,112)(  3,109)(  4,110)(  5,107)(  6,108)(  7,105)(  8,106)
(  9,104)( 10,103)( 11,102)( 12,101)( 13,100)( 14, 99)( 15, 98)( 16, 97)
( 17,127)( 18,128)( 19,125)( 20,126)( 21,123)( 22,124)( 23,121)( 24,122)
( 25,120)( 26,119)( 27,118)( 28,117)( 29,116)( 30,115)( 31,114)( 32,113)
( 33,143)( 34,144)( 35,141)( 36,142)( 37,139)( 38,140)( 39,137)( 40,138)
( 41,136)( 42,135)( 43,134)( 44,133)( 45,132)( 46,131)( 47,130)( 48,129)
( 49,159)( 50,160)( 51,157)( 52,158)( 53,155)( 54,156)( 55,153)( 56,154)
( 57,152)( 58,151)( 59,150)( 60,149)( 61,148)( 62,147)( 63,146)( 64,145)
( 65,175)( 66,176)( 67,173)( 68,174)( 69,171)( 70,172)( 71,169)( 72,170)
( 73,168)( 74,167)( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)( 80,161)
( 81,191)( 82,192)( 83,189)( 84,190)( 85,187)( 86,188)( 87,185)( 88,186)
( 89,184)( 90,183)( 91,182)( 92,181)( 93,180)( 94,179)( 95,178)( 96,177);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  5,  7)(  6,  8)(  9, 12)( 10, 11)( 13, 14)( 15, 16)( 17, 31)
( 18, 32)( 19, 29)( 20, 30)( 21, 25)( 22, 26)( 23, 27)( 24, 28)( 33, 65)
( 34, 66)( 35, 67)( 36, 68)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 76)
( 42, 75)( 43, 74)( 44, 73)( 45, 78)( 46, 77)( 47, 80)( 48, 79)( 49, 95)
( 50, 96)( 51, 93)( 52, 94)( 53, 89)( 54, 90)( 55, 91)( 56, 92)( 57, 85)
( 58, 86)( 59, 87)( 60, 88)( 61, 83)( 62, 84)( 63, 81)( 64, 82)( 97, 98)
( 99,100)(101,104)(102,103)(105,107)(106,108)(113,128)(114,127)(115,126)
(116,125)(117,122)(118,121)(119,124)(120,123)(129,162)(130,161)(131,164)
(132,163)(133,168)(134,167)(135,166)(136,165)(137,171)(138,172)(139,169)
(140,170)(141,173)(142,174)(143,175)(144,176)(145,192)(146,191)(147,190)
(148,189)(149,186)(150,185)(151,188)(152,187)(153,182)(154,181)(155,184)
(156,183)(157,180)(158,179)(159,178)(160,177);
s1 := Sym(192)!(  1, 65)(  2, 66)(  3, 69)(  4, 70)(  5, 67)(  6, 68)(  7, 71)
(  8, 72)(  9, 82)( 10, 81)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 88)
( 16, 87)( 17, 74)( 18, 73)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 80)
( 24, 79)( 25, 90)( 26, 89)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 96)
( 32, 95)( 35, 37)( 36, 38)( 41, 50)( 42, 49)( 43, 54)( 44, 53)( 45, 52)
( 46, 51)( 47, 56)( 48, 55)( 57, 58)( 59, 62)( 60, 61)( 63, 64)( 97,161)
( 98,162)( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,178)
(106,177)(107,182)(108,181)(109,180)(110,179)(111,184)(112,183)(113,170)
(114,169)(115,174)(116,173)(117,172)(118,171)(119,176)(120,175)(121,186)
(122,185)(123,190)(124,189)(125,188)(126,187)(127,192)(128,191)(131,133)
(132,134)(137,146)(138,145)(139,150)(140,149)(141,148)(142,147)(143,152)
(144,151)(153,154)(155,158)(156,157)(159,160);
s2 := Sym(192)!(  1,111)(  2,112)(  3,109)(  4,110)(  5,107)(  6,108)(  7,105)
(  8,106)(  9,104)( 10,103)( 11,102)( 12,101)( 13,100)( 14, 99)( 15, 98)
( 16, 97)( 17,127)( 18,128)( 19,125)( 20,126)( 21,123)( 22,124)( 23,121)
( 24,122)( 25,120)( 26,119)( 27,118)( 28,117)( 29,116)( 30,115)( 31,114)
( 32,113)( 33,143)( 34,144)( 35,141)( 36,142)( 37,139)( 38,140)( 39,137)
( 40,138)( 41,136)( 42,135)( 43,134)( 44,133)( 45,132)( 46,131)( 47,130)
( 48,129)( 49,159)( 50,160)( 51,157)( 52,158)( 53,155)( 54,156)( 55,153)
( 56,154)( 57,152)( 58,151)( 59,150)( 60,149)( 61,148)( 62,147)( 63,146)
( 64,145)( 65,175)( 66,176)( 67,173)( 68,174)( 69,171)( 70,172)( 71,169)
( 72,170)( 73,168)( 74,167)( 75,166)( 76,165)( 77,164)( 78,163)( 79,162)
( 80,161)( 81,191)( 82,192)( 83,189)( 84,190)( 85,187)( 86,188)( 87,185)
( 88,186)( 89,184)( 90,183)( 91,182)( 92,181)( 93,180)( 94,179)( 95,178)
( 96,177);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s0*s1*s2*s1*s0*s2 >; 
 
References : None.
to this polytope