Questions?
See the FAQ
or other info.

Polytope of Type {12,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4}*768d
if this polytope has a name.
Group : SmallGroup(768,1087743)
Rank : 3
Schlafli Type : {12,4}
Number of vertices, edges, etc : 96, 192, 32
Order of s0s1s2 : 12
Order of s0s1s2s1 : 4
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Self-Petrie
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4}*384d
   4-fold quotients : {12,4}*192a, {12,4}*192b, {6,4}*192b, {12,4}*192c
   8-fold quotients : {12,4}*96a, {12,4}*96b, {12,4}*96c, {6,4}*96
   12-fold quotients : {4,4}*64
   16-fold quotients : {12,2}*48, {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
   24-fold quotients : {4,4}*32
   32-fold quotients : {3,4}*24, {6,2}*24
   48-fold quotients : {2,4}*16, {4,2}*16
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)( 18, 22)
( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)( 39, 40)
( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)( 50, 62)( 51, 64)( 52, 63)
( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)( 59, 68)( 60, 67)
( 73, 85)( 74, 86)( 75, 88)( 76, 87)( 77, 93)( 78, 94)( 79, 96)( 80, 95)
( 81, 89)( 82, 90)( 83, 92)( 84, 91)( 97,121)( 98,122)( 99,124)(100,123)
(101,129)(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)(108,127)
(109,133)(110,134)(111,136)(112,135)(113,141)(114,142)(115,144)(116,143)
(117,137)(118,138)(119,140)(120,139)(145,181)(146,182)(147,184)(148,183)
(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)(156,187)
(157,169)(158,170)(159,172)(160,171)(161,177)(162,178)(163,180)(164,179)
(165,173)(166,174)(167,176)(168,175);;
s1 := (  1,129)(  2,131)(  3,130)(  4,132)(  5,125)(  6,127)(  7,126)(  8,128)
(  9,121)( 10,123)( 11,122)( 12,124)( 13,141)( 14,143)( 15,142)( 16,144)
( 17,137)( 18,139)( 19,138)( 20,140)( 21,133)( 22,135)( 23,134)( 24,136)
( 25,105)( 26,107)( 27,106)( 28,108)( 29,101)( 30,103)( 31,102)( 32,104)
( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,117)( 38,119)( 39,118)( 40,120)
( 41,113)( 42,115)( 43,114)( 44,116)( 45,109)( 46,111)( 47,110)( 48,112)
( 49,177)( 50,179)( 51,178)( 52,180)( 53,173)( 54,175)( 55,174)( 56,176)
( 57,169)( 58,171)( 59,170)( 60,172)( 61,189)( 62,191)( 63,190)( 64,192)
( 65,185)( 66,187)( 67,186)( 68,188)( 69,181)( 70,183)( 71,182)( 72,184)
( 73,153)( 74,155)( 75,154)( 76,156)( 77,149)( 78,151)( 79,150)( 80,152)
( 81,145)( 82,147)( 83,146)( 84,148)( 85,165)( 86,167)( 87,166)( 88,168)
( 89,161)( 90,163)( 91,162)( 92,164)( 93,157)( 94,159)( 95,158)( 96,160);;
s2 := (  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)( 15, 16)
( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 38)( 26, 37)( 27, 40)( 28, 39)
( 29, 42)( 30, 41)( 31, 44)( 32, 43)( 33, 46)( 34, 45)( 35, 48)( 36, 47)
( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)( 63, 64)
( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 86)( 74, 85)( 75, 88)( 76, 87)
( 77, 90)( 78, 89)( 79, 92)( 80, 91)( 81, 94)( 82, 93)( 83, 96)( 84, 95)
( 97,146)( 98,145)( 99,148)(100,147)(101,150)(102,149)(103,152)(104,151)
(105,154)(106,153)(107,156)(108,155)(109,158)(110,157)(111,160)(112,159)
(113,162)(114,161)(115,164)(116,163)(117,166)(118,165)(119,168)(120,167)
(121,182)(122,181)(123,184)(124,183)(125,186)(126,185)(127,188)(128,187)
(129,190)(130,189)(131,192)(132,191)(133,170)(134,169)(135,172)(136,171)
(137,174)(138,173)(139,176)(140,175)(141,178)(142,177)(143,180)(144,179);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  3,  4)(  5,  9)(  6, 10)(  7, 12)(  8, 11)( 15, 16)( 17, 21)
( 18, 22)( 19, 24)( 20, 23)( 27, 28)( 29, 33)( 30, 34)( 31, 36)( 32, 35)
( 39, 40)( 41, 45)( 42, 46)( 43, 48)( 44, 47)( 49, 61)( 50, 62)( 51, 64)
( 52, 63)( 53, 69)( 54, 70)( 55, 72)( 56, 71)( 57, 65)( 58, 66)( 59, 68)
( 60, 67)( 73, 85)( 74, 86)( 75, 88)( 76, 87)( 77, 93)( 78, 94)( 79, 96)
( 80, 95)( 81, 89)( 82, 90)( 83, 92)( 84, 91)( 97,121)( 98,122)( 99,124)
(100,123)(101,129)(102,130)(103,132)(104,131)(105,125)(106,126)(107,128)
(108,127)(109,133)(110,134)(111,136)(112,135)(113,141)(114,142)(115,144)
(116,143)(117,137)(118,138)(119,140)(120,139)(145,181)(146,182)(147,184)
(148,183)(149,189)(150,190)(151,192)(152,191)(153,185)(154,186)(155,188)
(156,187)(157,169)(158,170)(159,172)(160,171)(161,177)(162,178)(163,180)
(164,179)(165,173)(166,174)(167,176)(168,175);
s1 := Sym(192)!(  1,129)(  2,131)(  3,130)(  4,132)(  5,125)(  6,127)(  7,126)
(  8,128)(  9,121)( 10,123)( 11,122)( 12,124)( 13,141)( 14,143)( 15,142)
( 16,144)( 17,137)( 18,139)( 19,138)( 20,140)( 21,133)( 22,135)( 23,134)
( 24,136)( 25,105)( 26,107)( 27,106)( 28,108)( 29,101)( 30,103)( 31,102)
( 32,104)( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,117)( 38,119)( 39,118)
( 40,120)( 41,113)( 42,115)( 43,114)( 44,116)( 45,109)( 46,111)( 47,110)
( 48,112)( 49,177)( 50,179)( 51,178)( 52,180)( 53,173)( 54,175)( 55,174)
( 56,176)( 57,169)( 58,171)( 59,170)( 60,172)( 61,189)( 62,191)( 63,190)
( 64,192)( 65,185)( 66,187)( 67,186)( 68,188)( 69,181)( 70,183)( 71,182)
( 72,184)( 73,153)( 74,155)( 75,154)( 76,156)( 77,149)( 78,151)( 79,150)
( 80,152)( 81,145)( 82,147)( 83,146)( 84,148)( 85,165)( 86,167)( 87,166)
( 88,168)( 89,161)( 90,163)( 91,162)( 92,164)( 93,157)( 94,159)( 95,158)
( 96,160);
s2 := Sym(192)!(  1,  2)(  3,  4)(  5,  6)(  7,  8)(  9, 10)( 11, 12)( 13, 14)
( 15, 16)( 17, 18)( 19, 20)( 21, 22)( 23, 24)( 25, 38)( 26, 37)( 27, 40)
( 28, 39)( 29, 42)( 30, 41)( 31, 44)( 32, 43)( 33, 46)( 34, 45)( 35, 48)
( 36, 47)( 49, 50)( 51, 52)( 53, 54)( 55, 56)( 57, 58)( 59, 60)( 61, 62)
( 63, 64)( 65, 66)( 67, 68)( 69, 70)( 71, 72)( 73, 86)( 74, 85)( 75, 88)
( 76, 87)( 77, 90)( 78, 89)( 79, 92)( 80, 91)( 81, 94)( 82, 93)( 83, 96)
( 84, 95)( 97,146)( 98,145)( 99,148)(100,147)(101,150)(102,149)(103,152)
(104,151)(105,154)(106,153)(107,156)(108,155)(109,158)(110,157)(111,160)
(112,159)(113,162)(114,161)(115,164)(116,163)(117,166)(118,165)(119,168)
(120,167)(121,182)(122,181)(123,184)(124,183)(125,186)(126,185)(127,188)
(128,187)(129,190)(130,189)(131,192)(132,191)(133,170)(134,169)(135,172)
(136,171)(137,174)(138,173)(139,176)(140,175)(141,178)(142,177)(143,180)
(144,179);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s2*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope