Questions?
See the FAQ
or other info.

Polytope of Type {12,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,8}*768x
if this polytope has a name.
Group : SmallGroup(768,1088009)
Rank : 3
Schlafli Type : {12,8}
Number of vertices, edges, etc : 48, 192, 32
Order of s0s1s2 : 6
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,8}*384e
   4-fold quotients : {3,8}*192, {12,4}*192c
   8-fold quotients : {6,4}*96
   16-fold quotients : {3,4}*48, {6,4}*48b, {6,4}*48c
   32-fold quotients : {3,4}*24, {6,2}*24
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  7,  8)(  9, 16)( 10, 15)( 11, 13)( 12, 14)( 17, 33)( 18, 34)
( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 48)( 26, 47)
( 27, 45)( 28, 46)( 29, 43)( 30, 44)( 31, 42)( 32, 41)( 51, 52)( 55, 56)
( 57, 64)( 58, 63)( 59, 61)( 60, 62)( 65, 81)( 66, 82)( 67, 84)( 68, 83)
( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 96)( 74, 95)( 75, 93)( 76, 94)
( 77, 91)( 78, 92)( 79, 90)( 80, 89)( 97,145)( 98,146)( 99,148)(100,147)
(101,149)(102,150)(103,152)(104,151)(105,160)(106,159)(107,157)(108,158)
(109,155)(110,156)(111,154)(112,153)(113,177)(114,178)(115,180)(116,179)
(117,181)(118,182)(119,184)(120,183)(121,192)(122,191)(123,189)(124,190)
(125,187)(126,188)(127,186)(128,185)(129,161)(130,162)(131,164)(132,163)
(133,165)(134,166)(135,168)(136,167)(137,176)(138,175)(139,173)(140,174)
(141,171)(142,172)(143,170)(144,169);;
s1 := (  1,129)(  2,131)(  3,130)(  4,132)(  5,138)(  6,140)(  7,137)(  8,139)
(  9,135)( 10,133)( 11,136)( 12,134)( 13,144)( 14,142)( 15,143)( 16,141)
( 17,113)( 18,115)( 19,114)( 20,116)( 21,122)( 22,124)( 23,121)( 24,123)
( 25,119)( 26,117)( 27,120)( 28,118)( 29,128)( 30,126)( 31,127)( 32,125)
( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,106)( 38,108)( 39,105)( 40,107)
( 41,103)( 42,101)( 43,104)( 44,102)( 45,112)( 46,110)( 47,111)( 48,109)
( 49,177)( 50,179)( 51,178)( 52,180)( 53,186)( 54,188)( 55,185)( 56,187)
( 57,183)( 58,181)( 59,184)( 60,182)( 61,192)( 62,190)( 63,191)( 64,189)
( 65,161)( 66,163)( 67,162)( 68,164)( 69,170)( 70,172)( 71,169)( 72,171)
( 73,167)( 74,165)( 75,168)( 76,166)( 77,176)( 78,174)( 79,175)( 80,173)
( 81,145)( 82,147)( 83,146)( 84,148)( 85,154)( 86,156)( 87,153)( 88,155)
( 89,151)( 90,149)( 91,152)( 92,150)( 93,160)( 94,158)( 95,159)( 96,157);;
s2 := (  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 15)( 10, 16)( 11, 13)( 12, 14)
( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 31)( 26, 32)( 27, 29)( 28, 30)
( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 47)( 42, 48)( 43, 45)( 44, 46)
( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 63)( 58, 64)( 59, 61)( 60, 62)
( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 79)( 74, 80)( 75, 77)( 76, 78)
( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 95)( 90, 96)( 91, 93)( 92, 94)
( 97,149)( 98,150)( 99,151)(100,152)(101,145)(102,146)(103,147)(104,148)
(105,159)(106,160)(107,157)(108,158)(109,155)(110,156)(111,153)(112,154)
(113,165)(114,166)(115,167)(116,168)(117,161)(118,162)(119,163)(120,164)
(121,175)(122,176)(123,173)(124,174)(125,171)(126,172)(127,169)(128,170)
(129,181)(130,182)(131,183)(132,184)(133,177)(134,178)(135,179)(136,180)
(137,191)(138,192)(139,189)(140,190)(141,187)(142,188)(143,185)(144,186);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  3,  4)(  7,  8)(  9, 16)( 10, 15)( 11, 13)( 12, 14)( 17, 33)
( 18, 34)( 19, 36)( 20, 35)( 21, 37)( 22, 38)( 23, 40)( 24, 39)( 25, 48)
( 26, 47)( 27, 45)( 28, 46)( 29, 43)( 30, 44)( 31, 42)( 32, 41)( 51, 52)
( 55, 56)( 57, 64)( 58, 63)( 59, 61)( 60, 62)( 65, 81)( 66, 82)( 67, 84)
( 68, 83)( 69, 85)( 70, 86)( 71, 88)( 72, 87)( 73, 96)( 74, 95)( 75, 93)
( 76, 94)( 77, 91)( 78, 92)( 79, 90)( 80, 89)( 97,145)( 98,146)( 99,148)
(100,147)(101,149)(102,150)(103,152)(104,151)(105,160)(106,159)(107,157)
(108,158)(109,155)(110,156)(111,154)(112,153)(113,177)(114,178)(115,180)
(116,179)(117,181)(118,182)(119,184)(120,183)(121,192)(122,191)(123,189)
(124,190)(125,187)(126,188)(127,186)(128,185)(129,161)(130,162)(131,164)
(132,163)(133,165)(134,166)(135,168)(136,167)(137,176)(138,175)(139,173)
(140,174)(141,171)(142,172)(143,170)(144,169);
s1 := Sym(192)!(  1,129)(  2,131)(  3,130)(  4,132)(  5,138)(  6,140)(  7,137)
(  8,139)(  9,135)( 10,133)( 11,136)( 12,134)( 13,144)( 14,142)( 15,143)
( 16,141)( 17,113)( 18,115)( 19,114)( 20,116)( 21,122)( 22,124)( 23,121)
( 24,123)( 25,119)( 26,117)( 27,120)( 28,118)( 29,128)( 30,126)( 31,127)
( 32,125)( 33, 97)( 34, 99)( 35, 98)( 36,100)( 37,106)( 38,108)( 39,105)
( 40,107)( 41,103)( 42,101)( 43,104)( 44,102)( 45,112)( 46,110)( 47,111)
( 48,109)( 49,177)( 50,179)( 51,178)( 52,180)( 53,186)( 54,188)( 55,185)
( 56,187)( 57,183)( 58,181)( 59,184)( 60,182)( 61,192)( 62,190)( 63,191)
( 64,189)( 65,161)( 66,163)( 67,162)( 68,164)( 69,170)( 70,172)( 71,169)
( 72,171)( 73,167)( 74,165)( 75,168)( 76,166)( 77,176)( 78,174)( 79,175)
( 80,173)( 81,145)( 82,147)( 83,146)( 84,148)( 85,154)( 86,156)( 87,153)
( 88,155)( 89,151)( 90,149)( 91,152)( 92,150)( 93,160)( 94,158)( 95,159)
( 96,157);
s2 := Sym(192)!(  1,  5)(  2,  6)(  3,  7)(  4,  8)(  9, 15)( 10, 16)( 11, 13)
( 12, 14)( 17, 21)( 18, 22)( 19, 23)( 20, 24)( 25, 31)( 26, 32)( 27, 29)
( 28, 30)( 33, 37)( 34, 38)( 35, 39)( 36, 40)( 41, 47)( 42, 48)( 43, 45)
( 44, 46)( 49, 53)( 50, 54)( 51, 55)( 52, 56)( 57, 63)( 58, 64)( 59, 61)
( 60, 62)( 65, 69)( 66, 70)( 67, 71)( 68, 72)( 73, 79)( 74, 80)( 75, 77)
( 76, 78)( 81, 85)( 82, 86)( 83, 87)( 84, 88)( 89, 95)( 90, 96)( 91, 93)
( 92, 94)( 97,149)( 98,150)( 99,151)(100,152)(101,145)(102,146)(103,147)
(104,148)(105,159)(106,160)(107,157)(108,158)(109,155)(110,156)(111,153)
(112,154)(113,165)(114,166)(115,167)(116,168)(117,161)(118,162)(119,163)
(120,164)(121,175)(122,176)(123,173)(124,174)(125,171)(126,172)(127,169)
(128,170)(129,181)(130,182)(131,183)(132,184)(133,177)(134,178)(135,179)
(136,180)(137,191)(138,192)(139,189)(140,190)(141,187)(142,188)(143,185)
(144,186);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope