Questions?
See the FAQ
or other info.

Polytope of Type {4,6,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,6,6}*768c
if this polytope has a name.
Group : SmallGroup(768,1088539)
Rank : 4
Schlafli Type : {4,6,6}
Number of vertices, edges, etc : 8, 32, 48, 8
Order of s0s1s2s3 : 8
Order of s0s1s2s3s2s1 : 4
Special Properties :
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,3,6}*384a, {4,6,3}*384b
   4-fold quotients : {4,3,3}*192
   8-fold quotients : {2,6,3}*96
   16-fold quotients : {2,3,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)(  8,104)
(  9,108)( 10,107)( 11,106)( 12,105)( 13,112)( 14,111)( 15,110)( 16,109)
( 17,118)( 18,117)( 19,120)( 20,119)( 21,114)( 22,113)( 23,116)( 24,115)
( 25,128)( 26,127)( 27,126)( 28,125)( 29,124)( 30,123)( 31,122)( 32,121)
( 33,129)( 34,130)( 35,131)( 36,132)( 37,133)( 38,134)( 39,135)( 40,136)
( 41,140)( 42,139)( 43,138)( 44,137)( 45,144)( 46,143)( 47,142)( 48,141)
( 49,150)( 50,149)( 51,152)( 52,151)( 53,146)( 54,145)( 55,148)( 56,147)
( 57,160)( 58,159)( 59,158)( 60,157)( 61,156)( 62,155)( 63,154)( 64,153)
( 65,161)( 66,162)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)( 72,168)
( 73,172)( 74,171)( 75,170)( 76,169)( 77,176)( 78,175)( 79,174)( 80,173)
( 81,182)( 82,181)( 83,184)( 84,183)( 85,178)( 86,177)( 87,180)( 88,179)
( 89,192)( 90,191)( 91,190)( 92,189)( 93,188)( 94,187)( 95,186)( 96,185)
(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)(200,296)
(201,300)(202,299)(203,298)(204,297)(205,304)(206,303)(207,302)(208,301)
(209,310)(210,309)(211,312)(212,311)(213,306)(214,305)(215,308)(216,307)
(217,320)(218,319)(219,318)(220,317)(221,316)(222,315)(223,314)(224,313)
(225,321)(226,322)(227,323)(228,324)(229,325)(230,326)(231,327)(232,328)
(233,332)(234,331)(235,330)(236,329)(237,336)(238,335)(239,334)(240,333)
(241,342)(242,341)(243,344)(244,343)(245,338)(246,337)(247,340)(248,339)
(249,352)(250,351)(251,350)(252,349)(253,348)(254,347)(255,346)(256,345)
(257,353)(258,354)(259,355)(260,356)(261,357)(262,358)(263,359)(264,360)
(265,364)(266,363)(267,362)(268,361)(269,368)(270,367)(271,366)(272,365)
(273,374)(274,373)(275,376)(276,375)(277,370)(278,369)(279,372)(280,371)
(281,384)(282,383)(283,382)(284,381)(285,380)(286,379)(287,378)(288,377);;
s1 := (  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 16)(  6, 15)(  7, 14)(  8, 13)
( 21, 24)( 22, 23)( 29, 32)( 30, 31)( 33, 73)( 34, 74)( 35, 75)( 36, 76)
( 37, 80)( 38, 79)( 39, 78)( 40, 77)( 41, 65)( 42, 66)( 43, 67)( 44, 68)
( 45, 72)( 46, 71)( 47, 70)( 48, 69)( 49, 81)( 50, 82)( 51, 83)( 52, 84)
( 53, 88)( 54, 87)( 55, 86)( 56, 85)( 57, 89)( 58, 90)( 59, 91)( 60, 92)
( 61, 96)( 62, 95)( 63, 94)( 64, 93)( 97,105)( 98,106)( 99,107)(100,108)
(101,112)(102,111)(103,110)(104,109)(117,120)(118,119)(125,128)(126,127)
(129,169)(130,170)(131,171)(132,172)(133,176)(134,175)(135,174)(136,173)
(137,161)(138,162)(139,163)(140,164)(141,168)(142,167)(143,166)(144,165)
(145,177)(146,178)(147,179)(148,180)(149,184)(150,183)(151,182)(152,181)
(153,185)(154,186)(155,187)(156,188)(157,192)(158,191)(159,190)(160,189)
(193,201)(194,202)(195,203)(196,204)(197,208)(198,207)(199,206)(200,205)
(213,216)(214,215)(221,224)(222,223)(225,265)(226,266)(227,267)(228,268)
(229,272)(230,271)(231,270)(232,269)(233,257)(234,258)(235,259)(236,260)
(237,264)(238,263)(239,262)(240,261)(241,273)(242,274)(243,275)(244,276)
(245,280)(246,279)(247,278)(248,277)(249,281)(250,282)(251,283)(252,284)
(253,288)(254,287)(255,286)(256,285)(289,297)(290,298)(291,299)(292,300)
(293,304)(294,303)(295,302)(296,301)(309,312)(310,311)(317,320)(318,319)
(321,361)(322,362)(323,363)(324,364)(325,368)(326,367)(327,366)(328,365)
(329,353)(330,354)(331,355)(332,356)(333,360)(334,359)(335,358)(336,357)
(337,369)(338,370)(339,371)(340,372)(341,376)(342,375)(343,374)(344,373)
(345,377)(346,378)(347,379)(348,380)(349,384)(350,383)(351,382)(352,381);;
s2 := (  1,257)(  2,258)(  3,261)(  4,262)(  5,259)(  6,260)(  7,263)(  8,264)
(  9,273)( 10,274)( 11,277)( 12,278)( 13,275)( 14,276)( 15,279)( 16,280)
( 17,265)( 18,266)( 19,269)( 20,270)( 21,267)( 22,268)( 23,271)( 24,272)
( 25,281)( 26,282)( 27,285)( 28,286)( 29,283)( 30,284)( 31,287)( 32,288)
( 33,225)( 34,226)( 35,229)( 36,230)( 37,227)( 38,228)( 39,231)( 40,232)
( 41,241)( 42,242)( 43,245)( 44,246)( 45,243)( 46,244)( 47,247)( 48,248)
( 49,233)( 50,234)( 51,237)( 52,238)( 53,235)( 54,236)( 55,239)( 56,240)
( 57,249)( 58,250)( 59,253)( 60,254)( 61,251)( 62,252)( 63,255)( 64,256)
( 65,193)( 66,194)( 67,197)( 68,198)( 69,195)( 70,196)( 71,199)( 72,200)
( 73,209)( 74,210)( 75,213)( 76,214)( 77,211)( 78,212)( 79,215)( 80,216)
( 81,201)( 82,202)( 83,205)( 84,206)( 85,203)( 86,204)( 87,207)( 88,208)
( 89,217)( 90,218)( 91,221)( 92,222)( 93,219)( 94,220)( 95,223)( 96,224)
( 97,353)( 98,354)( 99,357)(100,358)(101,355)(102,356)(103,359)(104,360)
(105,369)(106,370)(107,373)(108,374)(109,371)(110,372)(111,375)(112,376)
(113,361)(114,362)(115,365)(116,366)(117,363)(118,364)(119,367)(120,368)
(121,377)(122,378)(123,381)(124,382)(125,379)(126,380)(127,383)(128,384)
(129,321)(130,322)(131,325)(132,326)(133,323)(134,324)(135,327)(136,328)
(137,337)(138,338)(139,341)(140,342)(141,339)(142,340)(143,343)(144,344)
(145,329)(146,330)(147,333)(148,334)(149,331)(150,332)(151,335)(152,336)
(153,345)(154,346)(155,349)(156,350)(157,347)(158,348)(159,351)(160,352)
(161,289)(162,290)(163,293)(164,294)(165,291)(166,292)(167,295)(168,296)
(169,305)(170,306)(171,309)(172,310)(173,307)(174,308)(175,311)(176,312)
(177,297)(178,298)(179,301)(180,302)(181,299)(182,300)(183,303)(184,304)
(185,313)(186,314)(187,317)(188,318)(189,315)(190,316)(191,319)(192,320);;
s3 := (  1,196)(  2,195)(  3,194)(  4,193)(  5,198)(  6,197)(  7,200)(  8,199)
(  9,204)( 10,203)( 11,202)( 12,201)( 13,206)( 14,205)( 15,208)( 16,207)
( 17,220)( 18,219)( 19,218)( 20,217)( 21,222)( 22,221)( 23,224)( 24,223)
( 25,212)( 26,211)( 27,210)( 28,209)( 29,214)( 30,213)( 31,216)( 32,215)
( 33,260)( 34,259)( 35,258)( 36,257)( 37,262)( 38,261)( 39,264)( 40,263)
( 41,268)( 42,267)( 43,266)( 44,265)( 45,270)( 46,269)( 47,272)( 48,271)
( 49,284)( 50,283)( 51,282)( 52,281)( 53,286)( 54,285)( 55,288)( 56,287)
( 57,276)( 58,275)( 59,274)( 60,273)( 61,278)( 62,277)( 63,280)( 64,279)
( 65,228)( 66,227)( 67,226)( 68,225)( 69,230)( 70,229)( 71,232)( 72,231)
( 73,236)( 74,235)( 75,234)( 76,233)( 77,238)( 78,237)( 79,240)( 80,239)
( 81,252)( 82,251)( 83,250)( 84,249)( 85,254)( 86,253)( 87,256)( 88,255)
( 89,244)( 90,243)( 91,242)( 92,241)( 93,246)( 94,245)( 95,248)( 96,247)
( 97,292)( 98,291)( 99,290)(100,289)(101,294)(102,293)(103,296)(104,295)
(105,300)(106,299)(107,298)(108,297)(109,302)(110,301)(111,304)(112,303)
(113,316)(114,315)(115,314)(116,313)(117,318)(118,317)(119,320)(120,319)
(121,308)(122,307)(123,306)(124,305)(125,310)(126,309)(127,312)(128,311)
(129,356)(130,355)(131,354)(132,353)(133,358)(134,357)(135,360)(136,359)
(137,364)(138,363)(139,362)(140,361)(141,366)(142,365)(143,368)(144,367)
(145,380)(146,379)(147,378)(148,377)(149,382)(150,381)(151,384)(152,383)
(153,372)(154,371)(155,370)(156,369)(157,374)(158,373)(159,376)(160,375)
(161,324)(162,323)(163,322)(164,321)(165,326)(166,325)(167,328)(168,327)
(169,332)(170,331)(171,330)(172,329)(173,334)(174,333)(175,336)(176,335)
(177,348)(178,347)(179,346)(180,345)(181,350)(182,349)(183,352)(184,351)
(185,340)(186,339)(187,338)(188,337)(189,342)(190,341)(191,344)(192,343);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s0*s2*s1*s0*s1*s3*s2*s1*s3*s0*s1*s2*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)
(  8,104)(  9,108)( 10,107)( 11,106)( 12,105)( 13,112)( 14,111)( 15,110)
( 16,109)( 17,118)( 18,117)( 19,120)( 20,119)( 21,114)( 22,113)( 23,116)
( 24,115)( 25,128)( 26,127)( 27,126)( 28,125)( 29,124)( 30,123)( 31,122)
( 32,121)( 33,129)( 34,130)( 35,131)( 36,132)( 37,133)( 38,134)( 39,135)
( 40,136)( 41,140)( 42,139)( 43,138)( 44,137)( 45,144)( 46,143)( 47,142)
( 48,141)( 49,150)( 50,149)( 51,152)( 52,151)( 53,146)( 54,145)( 55,148)
( 56,147)( 57,160)( 58,159)( 59,158)( 60,157)( 61,156)( 62,155)( 63,154)
( 64,153)( 65,161)( 66,162)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)
( 72,168)( 73,172)( 74,171)( 75,170)( 76,169)( 77,176)( 78,175)( 79,174)
( 80,173)( 81,182)( 82,181)( 83,184)( 84,183)( 85,178)( 86,177)( 87,180)
( 88,179)( 89,192)( 90,191)( 91,190)( 92,189)( 93,188)( 94,187)( 95,186)
( 96,185)(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)
(200,296)(201,300)(202,299)(203,298)(204,297)(205,304)(206,303)(207,302)
(208,301)(209,310)(210,309)(211,312)(212,311)(213,306)(214,305)(215,308)
(216,307)(217,320)(218,319)(219,318)(220,317)(221,316)(222,315)(223,314)
(224,313)(225,321)(226,322)(227,323)(228,324)(229,325)(230,326)(231,327)
(232,328)(233,332)(234,331)(235,330)(236,329)(237,336)(238,335)(239,334)
(240,333)(241,342)(242,341)(243,344)(244,343)(245,338)(246,337)(247,340)
(248,339)(249,352)(250,351)(251,350)(252,349)(253,348)(254,347)(255,346)
(256,345)(257,353)(258,354)(259,355)(260,356)(261,357)(262,358)(263,359)
(264,360)(265,364)(266,363)(267,362)(268,361)(269,368)(270,367)(271,366)
(272,365)(273,374)(274,373)(275,376)(276,375)(277,370)(278,369)(279,372)
(280,371)(281,384)(282,383)(283,382)(284,381)(285,380)(286,379)(287,378)
(288,377);
s1 := Sym(384)!(  1,  9)(  2, 10)(  3, 11)(  4, 12)(  5, 16)(  6, 15)(  7, 14)
(  8, 13)( 21, 24)( 22, 23)( 29, 32)( 30, 31)( 33, 73)( 34, 74)( 35, 75)
( 36, 76)( 37, 80)( 38, 79)( 39, 78)( 40, 77)( 41, 65)( 42, 66)( 43, 67)
( 44, 68)( 45, 72)( 46, 71)( 47, 70)( 48, 69)( 49, 81)( 50, 82)( 51, 83)
( 52, 84)( 53, 88)( 54, 87)( 55, 86)( 56, 85)( 57, 89)( 58, 90)( 59, 91)
( 60, 92)( 61, 96)( 62, 95)( 63, 94)( 64, 93)( 97,105)( 98,106)( 99,107)
(100,108)(101,112)(102,111)(103,110)(104,109)(117,120)(118,119)(125,128)
(126,127)(129,169)(130,170)(131,171)(132,172)(133,176)(134,175)(135,174)
(136,173)(137,161)(138,162)(139,163)(140,164)(141,168)(142,167)(143,166)
(144,165)(145,177)(146,178)(147,179)(148,180)(149,184)(150,183)(151,182)
(152,181)(153,185)(154,186)(155,187)(156,188)(157,192)(158,191)(159,190)
(160,189)(193,201)(194,202)(195,203)(196,204)(197,208)(198,207)(199,206)
(200,205)(213,216)(214,215)(221,224)(222,223)(225,265)(226,266)(227,267)
(228,268)(229,272)(230,271)(231,270)(232,269)(233,257)(234,258)(235,259)
(236,260)(237,264)(238,263)(239,262)(240,261)(241,273)(242,274)(243,275)
(244,276)(245,280)(246,279)(247,278)(248,277)(249,281)(250,282)(251,283)
(252,284)(253,288)(254,287)(255,286)(256,285)(289,297)(290,298)(291,299)
(292,300)(293,304)(294,303)(295,302)(296,301)(309,312)(310,311)(317,320)
(318,319)(321,361)(322,362)(323,363)(324,364)(325,368)(326,367)(327,366)
(328,365)(329,353)(330,354)(331,355)(332,356)(333,360)(334,359)(335,358)
(336,357)(337,369)(338,370)(339,371)(340,372)(341,376)(342,375)(343,374)
(344,373)(345,377)(346,378)(347,379)(348,380)(349,384)(350,383)(351,382)
(352,381);
s2 := Sym(384)!(  1,257)(  2,258)(  3,261)(  4,262)(  5,259)(  6,260)(  7,263)
(  8,264)(  9,273)( 10,274)( 11,277)( 12,278)( 13,275)( 14,276)( 15,279)
( 16,280)( 17,265)( 18,266)( 19,269)( 20,270)( 21,267)( 22,268)( 23,271)
( 24,272)( 25,281)( 26,282)( 27,285)( 28,286)( 29,283)( 30,284)( 31,287)
( 32,288)( 33,225)( 34,226)( 35,229)( 36,230)( 37,227)( 38,228)( 39,231)
( 40,232)( 41,241)( 42,242)( 43,245)( 44,246)( 45,243)( 46,244)( 47,247)
( 48,248)( 49,233)( 50,234)( 51,237)( 52,238)( 53,235)( 54,236)( 55,239)
( 56,240)( 57,249)( 58,250)( 59,253)( 60,254)( 61,251)( 62,252)( 63,255)
( 64,256)( 65,193)( 66,194)( 67,197)( 68,198)( 69,195)( 70,196)( 71,199)
( 72,200)( 73,209)( 74,210)( 75,213)( 76,214)( 77,211)( 78,212)( 79,215)
( 80,216)( 81,201)( 82,202)( 83,205)( 84,206)( 85,203)( 86,204)( 87,207)
( 88,208)( 89,217)( 90,218)( 91,221)( 92,222)( 93,219)( 94,220)( 95,223)
( 96,224)( 97,353)( 98,354)( 99,357)(100,358)(101,355)(102,356)(103,359)
(104,360)(105,369)(106,370)(107,373)(108,374)(109,371)(110,372)(111,375)
(112,376)(113,361)(114,362)(115,365)(116,366)(117,363)(118,364)(119,367)
(120,368)(121,377)(122,378)(123,381)(124,382)(125,379)(126,380)(127,383)
(128,384)(129,321)(130,322)(131,325)(132,326)(133,323)(134,324)(135,327)
(136,328)(137,337)(138,338)(139,341)(140,342)(141,339)(142,340)(143,343)
(144,344)(145,329)(146,330)(147,333)(148,334)(149,331)(150,332)(151,335)
(152,336)(153,345)(154,346)(155,349)(156,350)(157,347)(158,348)(159,351)
(160,352)(161,289)(162,290)(163,293)(164,294)(165,291)(166,292)(167,295)
(168,296)(169,305)(170,306)(171,309)(172,310)(173,307)(174,308)(175,311)
(176,312)(177,297)(178,298)(179,301)(180,302)(181,299)(182,300)(183,303)
(184,304)(185,313)(186,314)(187,317)(188,318)(189,315)(190,316)(191,319)
(192,320);
s3 := Sym(384)!(  1,196)(  2,195)(  3,194)(  4,193)(  5,198)(  6,197)(  7,200)
(  8,199)(  9,204)( 10,203)( 11,202)( 12,201)( 13,206)( 14,205)( 15,208)
( 16,207)( 17,220)( 18,219)( 19,218)( 20,217)( 21,222)( 22,221)( 23,224)
( 24,223)( 25,212)( 26,211)( 27,210)( 28,209)( 29,214)( 30,213)( 31,216)
( 32,215)( 33,260)( 34,259)( 35,258)( 36,257)( 37,262)( 38,261)( 39,264)
( 40,263)( 41,268)( 42,267)( 43,266)( 44,265)( 45,270)( 46,269)( 47,272)
( 48,271)( 49,284)( 50,283)( 51,282)( 52,281)( 53,286)( 54,285)( 55,288)
( 56,287)( 57,276)( 58,275)( 59,274)( 60,273)( 61,278)( 62,277)( 63,280)
( 64,279)( 65,228)( 66,227)( 67,226)( 68,225)( 69,230)( 70,229)( 71,232)
( 72,231)( 73,236)( 74,235)( 75,234)( 76,233)( 77,238)( 78,237)( 79,240)
( 80,239)( 81,252)( 82,251)( 83,250)( 84,249)( 85,254)( 86,253)( 87,256)
( 88,255)( 89,244)( 90,243)( 91,242)( 92,241)( 93,246)( 94,245)( 95,248)
( 96,247)( 97,292)( 98,291)( 99,290)(100,289)(101,294)(102,293)(103,296)
(104,295)(105,300)(106,299)(107,298)(108,297)(109,302)(110,301)(111,304)
(112,303)(113,316)(114,315)(115,314)(116,313)(117,318)(118,317)(119,320)
(120,319)(121,308)(122,307)(123,306)(124,305)(125,310)(126,309)(127,312)
(128,311)(129,356)(130,355)(131,354)(132,353)(133,358)(134,357)(135,360)
(136,359)(137,364)(138,363)(139,362)(140,361)(141,366)(142,365)(143,368)
(144,367)(145,380)(146,379)(147,378)(148,377)(149,382)(150,381)(151,384)
(152,383)(153,372)(154,371)(155,370)(156,369)(157,374)(158,373)(159,376)
(160,375)(161,324)(162,323)(163,322)(164,321)(165,326)(166,325)(167,328)
(168,327)(169,332)(170,331)(171,330)(172,329)(173,334)(174,333)(175,336)
(176,335)(177,348)(178,347)(179,346)(180,345)(181,350)(182,349)(183,352)
(184,351)(185,340)(186,339)(187,338)(188,337)(189,342)(190,341)(191,344)
(192,343);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2, 
s0*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2, 
s3*s0*s2*s1*s0*s1*s3*s2*s1*s3*s0*s1*s2*s1*s0*s1 >; 
 
References : None.
to this polytope