Questions?
See the FAQ
or other info.

Polytope of Type {16,6,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,6,3}*768
Also Known As : {{16,6|2},{6,3}4}. if this polytope has another name.
Group : SmallGroup(768,1088585)
Rank : 4
Schlafli Type : {16,6,3}
Number of vertices, edges, etc : 16, 64, 12, 4
Order of s0s1s2s3 : 16
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,6,3}*384
   4-fold quotients : {4,6,3}*192
   8-fold quotients : {2,6,3}*96
   16-fold quotients : {2,3,3}*48
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 25, 37)( 26, 38)( 27, 39)( 28, 40)( 29, 41)( 30, 42)( 31, 43)( 32, 44)
( 33, 45)( 34, 46)( 35, 47)( 36, 48)( 49, 73)( 50, 74)( 51, 75)( 52, 76)
( 53, 77)( 54, 78)( 55, 79)( 56, 80)( 57, 81)( 58, 82)( 59, 83)( 60, 84)
( 61, 85)( 62, 86)( 63, 87)( 64, 88)( 65, 89)( 66, 90)( 67, 91)( 68, 92)
( 69, 93)( 70, 94)( 71, 95)( 72, 96)( 97,145)( 98,146)( 99,147)(100,148)
(101,149)(102,150)(103,151)(104,152)(105,153)(106,154)(107,155)(108,156)
(109,157)(110,158)(111,159)(112,160)(113,161)(114,162)(115,163)(116,164)
(117,165)(118,166)(119,167)(120,168)(121,181)(122,182)(123,183)(124,184)
(125,185)(126,186)(127,187)(128,188)(129,189)(130,190)(131,191)(132,192)
(133,169)(134,170)(135,171)(136,172)(137,173)(138,174)(139,175)(140,176)
(141,177)(142,178)(143,179)(144,180);;
s1 := (  1, 97)(  2, 98)(  3,100)(  4, 99)(  5,105)(  6,106)(  7,108)(  8,107)
(  9,101)( 10,102)( 11,104)( 12,103)( 13,109)( 14,110)( 15,112)( 16,111)
( 17,117)( 18,118)( 19,120)( 20,119)( 21,113)( 22,114)( 23,116)( 24,115)
( 25,133)( 26,134)( 27,136)( 28,135)( 29,141)( 30,142)( 31,144)( 32,143)
( 33,137)( 34,138)( 35,140)( 36,139)( 37,121)( 38,122)( 39,124)( 40,123)
( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)( 48,127)
( 49,169)( 50,170)( 51,172)( 52,171)( 53,177)( 54,178)( 55,180)( 56,179)
( 57,173)( 58,174)( 59,176)( 60,175)( 61,181)( 62,182)( 63,184)( 64,183)
( 65,189)( 66,190)( 67,192)( 68,191)( 69,185)( 70,186)( 71,188)( 72,187)
( 73,145)( 74,146)( 75,148)( 76,147)( 77,153)( 78,154)( 79,156)( 80,155)
( 81,149)( 82,150)( 83,152)( 84,151)( 85,157)( 86,158)( 87,160)( 88,159)
( 89,165)( 90,166)( 91,168)( 92,167)( 93,161)( 94,162)( 95,164)( 96,163);;
s2 := (  1,  9)(  2, 11)(  3, 10)(  4, 12)(  6,  7)( 13, 21)( 14, 23)( 15, 22)
( 16, 24)( 18, 19)( 25, 33)( 26, 35)( 27, 34)( 28, 36)( 30, 31)( 37, 45)
( 38, 47)( 39, 46)( 40, 48)( 42, 43)( 49, 57)( 50, 59)( 51, 58)( 52, 60)
( 54, 55)( 61, 69)( 62, 71)( 63, 70)( 64, 72)( 66, 67)( 73, 81)( 74, 83)
( 75, 82)( 76, 84)( 78, 79)( 85, 93)( 86, 95)( 87, 94)( 88, 96)( 90, 91)
( 97,105)( 98,107)( 99,106)(100,108)(102,103)(109,117)(110,119)(111,118)
(112,120)(114,115)(121,129)(122,131)(123,130)(124,132)(126,127)(133,141)
(134,143)(135,142)(136,144)(138,139)(145,153)(146,155)(147,154)(148,156)
(150,151)(157,165)(158,167)(159,166)(160,168)(162,163)(169,177)(170,179)
(171,178)(172,180)(174,175)(181,189)(182,191)(183,190)(184,192)(186,187);;
s3 := (  1,  2)(  5, 10)(  6,  9)(  7, 11)(  8, 12)( 13, 14)( 17, 22)( 18, 21)
( 19, 23)( 20, 24)( 25, 26)( 29, 34)( 30, 33)( 31, 35)( 32, 36)( 37, 38)
( 41, 46)( 42, 45)( 43, 47)( 44, 48)( 49, 50)( 53, 58)( 54, 57)( 55, 59)
( 56, 60)( 61, 62)( 65, 70)( 66, 69)( 67, 71)( 68, 72)( 73, 74)( 77, 82)
( 78, 81)( 79, 83)( 80, 84)( 85, 86)( 89, 94)( 90, 93)( 91, 95)( 92, 96)
( 97, 98)(101,106)(102,105)(103,107)(104,108)(109,110)(113,118)(114,117)
(115,119)(116,120)(121,122)(125,130)(126,129)(127,131)(128,132)(133,134)
(137,142)(138,141)(139,143)(140,144)(145,146)(149,154)(150,153)(151,155)
(152,156)(157,158)(161,166)(162,165)(163,167)(164,168)(169,170)(173,178)
(174,177)(175,179)(176,180)(181,182)(185,190)(186,189)(187,191)(188,192);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!( 25, 37)( 26, 38)( 27, 39)( 28, 40)( 29, 41)( 30, 42)( 31, 43)
( 32, 44)( 33, 45)( 34, 46)( 35, 47)( 36, 48)( 49, 73)( 50, 74)( 51, 75)
( 52, 76)( 53, 77)( 54, 78)( 55, 79)( 56, 80)( 57, 81)( 58, 82)( 59, 83)
( 60, 84)( 61, 85)( 62, 86)( 63, 87)( 64, 88)( 65, 89)( 66, 90)( 67, 91)
( 68, 92)( 69, 93)( 70, 94)( 71, 95)( 72, 96)( 97,145)( 98,146)( 99,147)
(100,148)(101,149)(102,150)(103,151)(104,152)(105,153)(106,154)(107,155)
(108,156)(109,157)(110,158)(111,159)(112,160)(113,161)(114,162)(115,163)
(116,164)(117,165)(118,166)(119,167)(120,168)(121,181)(122,182)(123,183)
(124,184)(125,185)(126,186)(127,187)(128,188)(129,189)(130,190)(131,191)
(132,192)(133,169)(134,170)(135,171)(136,172)(137,173)(138,174)(139,175)
(140,176)(141,177)(142,178)(143,179)(144,180);
s1 := Sym(192)!(  1, 97)(  2, 98)(  3,100)(  4, 99)(  5,105)(  6,106)(  7,108)
(  8,107)(  9,101)( 10,102)( 11,104)( 12,103)( 13,109)( 14,110)( 15,112)
( 16,111)( 17,117)( 18,118)( 19,120)( 20,119)( 21,113)( 22,114)( 23,116)
( 24,115)( 25,133)( 26,134)( 27,136)( 28,135)( 29,141)( 30,142)( 31,144)
( 32,143)( 33,137)( 34,138)( 35,140)( 36,139)( 37,121)( 38,122)( 39,124)
( 40,123)( 41,129)( 42,130)( 43,132)( 44,131)( 45,125)( 46,126)( 47,128)
( 48,127)( 49,169)( 50,170)( 51,172)( 52,171)( 53,177)( 54,178)( 55,180)
( 56,179)( 57,173)( 58,174)( 59,176)( 60,175)( 61,181)( 62,182)( 63,184)
( 64,183)( 65,189)( 66,190)( 67,192)( 68,191)( 69,185)( 70,186)( 71,188)
( 72,187)( 73,145)( 74,146)( 75,148)( 76,147)( 77,153)( 78,154)( 79,156)
( 80,155)( 81,149)( 82,150)( 83,152)( 84,151)( 85,157)( 86,158)( 87,160)
( 88,159)( 89,165)( 90,166)( 91,168)( 92,167)( 93,161)( 94,162)( 95,164)
( 96,163);
s2 := Sym(192)!(  1,  9)(  2, 11)(  3, 10)(  4, 12)(  6,  7)( 13, 21)( 14, 23)
( 15, 22)( 16, 24)( 18, 19)( 25, 33)( 26, 35)( 27, 34)( 28, 36)( 30, 31)
( 37, 45)( 38, 47)( 39, 46)( 40, 48)( 42, 43)( 49, 57)( 50, 59)( 51, 58)
( 52, 60)( 54, 55)( 61, 69)( 62, 71)( 63, 70)( 64, 72)( 66, 67)( 73, 81)
( 74, 83)( 75, 82)( 76, 84)( 78, 79)( 85, 93)( 86, 95)( 87, 94)( 88, 96)
( 90, 91)( 97,105)( 98,107)( 99,106)(100,108)(102,103)(109,117)(110,119)
(111,118)(112,120)(114,115)(121,129)(122,131)(123,130)(124,132)(126,127)
(133,141)(134,143)(135,142)(136,144)(138,139)(145,153)(146,155)(147,154)
(148,156)(150,151)(157,165)(158,167)(159,166)(160,168)(162,163)(169,177)
(170,179)(171,178)(172,180)(174,175)(181,189)(182,191)(183,190)(184,192)
(186,187);
s3 := Sym(192)!(  1,  2)(  5, 10)(  6,  9)(  7, 11)(  8, 12)( 13, 14)( 17, 22)
( 18, 21)( 19, 23)( 20, 24)( 25, 26)( 29, 34)( 30, 33)( 31, 35)( 32, 36)
( 37, 38)( 41, 46)( 42, 45)( 43, 47)( 44, 48)( 49, 50)( 53, 58)( 54, 57)
( 55, 59)( 56, 60)( 61, 62)( 65, 70)( 66, 69)( 67, 71)( 68, 72)( 73, 74)
( 77, 82)( 78, 81)( 79, 83)( 80, 84)( 85, 86)( 89, 94)( 90, 93)( 91, 95)
( 92, 96)( 97, 98)(101,106)(102,105)(103,107)(104,108)(109,110)(113,118)
(114,117)(115,119)(116,120)(121,122)(125,130)(126,129)(127,131)(128,132)
(133,134)(137,142)(138,141)(139,143)(140,144)(145,146)(149,154)(150,153)
(151,155)(152,156)(157,158)(161,166)(162,165)(163,167)(164,168)(169,170)
(173,178)(174,177)(175,179)(176,180)(181,182)(185,190)(186,189)(187,191)
(188,192);
poly := sub<Sym(192)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope