Questions?
See the FAQ
or other info.

Polytope of Type {6,16}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,16}*768c
if this polytope has a name.
Group : SmallGroup(768,1088591)
Rank : 3
Schlafli Type : {6,16}
Number of vertices, edges, etc : 24, 192, 64
Order of s0s1s2 : 48
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,8}*384g
   4-fold quotients : {6,4}*192b
   8-fold quotients : {6,8}*96, {6,4}*96
   16-fold quotients : {6,4}*48a, {3,4}*48, {6,4}*48b, {6,4}*48c
   24-fold quotients : {2,8}*32
   32-fold quotients : {3,4}*24, {6,2}*24
   48-fold quotients : {2,4}*16
   64-fold quotients : {3,2}*12
   96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  3,  4)(  5,  7)(  6,  8)(  9, 17)( 10, 18)( 11, 20)( 12, 19)( 13, 23)
( 14, 24)( 15, 21)( 16, 22)( 27, 28)( 29, 31)( 30, 32)( 33, 41)( 34, 42)
( 35, 44)( 36, 43)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 51, 52)( 53, 55)
( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)( 62, 72)( 63, 69)
( 64, 70)( 75, 76)( 77, 79)( 78, 80)( 81, 89)( 82, 90)( 83, 92)( 84, 91)
( 85, 95)( 86, 96)( 87, 93)( 88, 94)( 97, 98)(101,104)(102,103)(105,114)
(106,113)(107,115)(108,116)(109,120)(110,119)(111,118)(112,117)(121,122)
(125,128)(126,127)(129,138)(130,137)(131,139)(132,140)(133,144)(134,143)
(135,142)(136,141)(145,146)(149,152)(150,151)(153,162)(154,161)(155,163)
(156,164)(157,168)(158,167)(159,166)(160,165)(169,170)(173,176)(174,175)
(177,186)(178,185)(179,187)(180,188)(181,192)(182,191)(183,190)(184,189);;
s1 := (  1, 17)(  2, 18)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 24)(  8, 23)
( 11, 14)( 12, 13)( 15, 16)( 25, 42)( 26, 41)( 27, 45)( 28, 46)( 29, 43)
( 30, 44)( 31, 47)( 32, 48)( 33, 34)( 35, 37)( 36, 38)( 49, 89)( 50, 90)
( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 96)( 56, 95)( 57, 81)( 58, 82)
( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 88)( 64, 87)( 65, 73)( 66, 74)
( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 80)( 72, 79)( 97,162)( 98,161)
( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,154)(106,153)
(107,157)(108,158)(109,155)(110,156)(111,159)(112,160)(113,146)(114,145)
(115,149)(116,150)(117,147)(118,148)(119,151)(120,152)(121,185)(122,186)
(123,190)(124,189)(125,188)(126,187)(127,192)(128,191)(129,177)(130,178)
(131,182)(132,181)(133,180)(134,179)(135,184)(136,183)(137,169)(138,170)
(139,174)(140,173)(141,172)(142,171)(143,176)(144,175);;
s2 := (  1,100)(  2, 99)(  3, 97)(  4, 98)(  5,104)(  6,103)(  7,101)(  8,102)
(  9,108)( 10,107)( 11,105)( 12,106)( 13,112)( 14,111)( 15,109)( 16,110)
( 17,116)( 18,115)( 19,113)( 20,114)( 21,120)( 22,119)( 23,117)( 24,118)
( 25,123)( 26,124)( 27,122)( 28,121)( 29,127)( 30,128)( 31,126)( 32,125)
( 33,131)( 34,132)( 35,130)( 36,129)( 37,135)( 38,136)( 39,134)( 40,133)
( 41,139)( 42,140)( 43,138)( 44,137)( 45,143)( 46,144)( 47,142)( 48,141)
( 49,172)( 50,171)( 51,169)( 52,170)( 53,176)( 54,175)( 55,173)( 56,174)
( 57,180)( 58,179)( 59,177)( 60,178)( 61,184)( 62,183)( 63,181)( 64,182)
( 65,188)( 66,187)( 67,185)( 68,186)( 69,192)( 70,191)( 71,189)( 72,190)
( 73,148)( 74,147)( 75,145)( 76,146)( 77,152)( 78,151)( 79,149)( 80,150)
( 81,156)( 82,155)( 83,153)( 84,154)( 85,160)( 86,159)( 87,157)( 88,158)
( 89,164)( 90,163)( 91,161)( 92,162)( 93,168)( 94,167)( 95,165)( 96,166);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(192)!(  3,  4)(  5,  7)(  6,  8)(  9, 17)( 10, 18)( 11, 20)( 12, 19)
( 13, 23)( 14, 24)( 15, 21)( 16, 22)( 27, 28)( 29, 31)( 30, 32)( 33, 41)
( 34, 42)( 35, 44)( 36, 43)( 37, 47)( 38, 48)( 39, 45)( 40, 46)( 51, 52)
( 53, 55)( 54, 56)( 57, 65)( 58, 66)( 59, 68)( 60, 67)( 61, 71)( 62, 72)
( 63, 69)( 64, 70)( 75, 76)( 77, 79)( 78, 80)( 81, 89)( 82, 90)( 83, 92)
( 84, 91)( 85, 95)( 86, 96)( 87, 93)( 88, 94)( 97, 98)(101,104)(102,103)
(105,114)(106,113)(107,115)(108,116)(109,120)(110,119)(111,118)(112,117)
(121,122)(125,128)(126,127)(129,138)(130,137)(131,139)(132,140)(133,144)
(134,143)(135,142)(136,141)(145,146)(149,152)(150,151)(153,162)(154,161)
(155,163)(156,164)(157,168)(158,167)(159,166)(160,165)(169,170)(173,176)
(174,175)(177,186)(178,185)(179,187)(180,188)(181,192)(182,191)(183,190)
(184,189);
s1 := Sym(192)!(  1, 17)(  2, 18)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 24)
(  8, 23)( 11, 14)( 12, 13)( 15, 16)( 25, 42)( 26, 41)( 27, 45)( 28, 46)
( 29, 43)( 30, 44)( 31, 47)( 32, 48)( 33, 34)( 35, 37)( 36, 38)( 49, 89)
( 50, 90)( 51, 94)( 52, 93)( 53, 92)( 54, 91)( 55, 96)( 56, 95)( 57, 81)
( 58, 82)( 59, 86)( 60, 85)( 61, 84)( 62, 83)( 63, 88)( 64, 87)( 65, 73)
( 66, 74)( 67, 78)( 68, 77)( 69, 76)( 70, 75)( 71, 80)( 72, 79)( 97,162)
( 98,161)( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,154)
(106,153)(107,157)(108,158)(109,155)(110,156)(111,159)(112,160)(113,146)
(114,145)(115,149)(116,150)(117,147)(118,148)(119,151)(120,152)(121,185)
(122,186)(123,190)(124,189)(125,188)(126,187)(127,192)(128,191)(129,177)
(130,178)(131,182)(132,181)(133,180)(134,179)(135,184)(136,183)(137,169)
(138,170)(139,174)(140,173)(141,172)(142,171)(143,176)(144,175);
s2 := Sym(192)!(  1,100)(  2, 99)(  3, 97)(  4, 98)(  5,104)(  6,103)(  7,101)
(  8,102)(  9,108)( 10,107)( 11,105)( 12,106)( 13,112)( 14,111)( 15,109)
( 16,110)( 17,116)( 18,115)( 19,113)( 20,114)( 21,120)( 22,119)( 23,117)
( 24,118)( 25,123)( 26,124)( 27,122)( 28,121)( 29,127)( 30,128)( 31,126)
( 32,125)( 33,131)( 34,132)( 35,130)( 36,129)( 37,135)( 38,136)( 39,134)
( 40,133)( 41,139)( 42,140)( 43,138)( 44,137)( 45,143)( 46,144)( 47,142)
( 48,141)( 49,172)( 50,171)( 51,169)( 52,170)( 53,176)( 54,175)( 55,173)
( 56,174)( 57,180)( 58,179)( 59,177)( 60,178)( 61,184)( 62,183)( 63,181)
( 64,182)( 65,188)( 66,187)( 67,185)( 68,186)( 69,192)( 70,191)( 71,189)
( 72,190)( 73,148)( 74,147)( 75,145)( 76,146)( 77,152)( 78,151)( 79,149)
( 80,150)( 81,156)( 82,155)( 83,153)( 84,154)( 85,160)( 86,159)( 87,157)
( 88,158)( 89,164)( 90,163)( 91,161)( 92,162)( 93,168)( 94,167)( 95,165)
( 96,166);
poly := sub<Sym(192)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s2*s1*s2*s1*s0*s1*s2*s1*s2*s1*s2*s1, 
s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope