Questions?
See the FAQ
or other info.

Polytope of Type {12,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4,2}*768d
if this polytope has a name.
Group : SmallGroup(768,1088705)
Rank : 4
Schlafli Type : {12,4,2}
Number of vertices, edges, etc : 48, 96, 16, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4,2}*384b, {6,4,2}*384b, {12,4,2}*384c
   4-fold quotients : {12,4,2}*192a, {12,4,2}*192b, {12,4,2}*192c, {6,4,2}*192
   8-fold quotients : {12,2,2}*96, {6,4,2}*96a, {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   12-fold quotients : {4,4,2}*64
   16-fold quotients : {3,4,2}*48, {6,2,2}*48
   24-fold quotients : {2,4,2}*32, {4,2,2}*32
   32-fold quotients : {3,2,2}*24
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36)(38,39)(41,45)(42,47)(43,46)(44,48)(49,73)
(50,75)(51,74)(52,76)(53,81)(54,83)(55,82)(56,84)(57,77)(58,79)(59,78)(60,80)
(61,85)(62,87)(63,86)(64,88)(65,93)(66,95)(67,94)(68,96)(69,89)(70,91)(71,90)
(72,92);;
s1 := ( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)(10,58)
(11,60)(12,59)(13,65)(14,66)(15,68)(16,67)(17,61)(18,62)(19,64)(20,63)(21,69)
(22,70)(23,72)(24,71)(25,77)(26,78)(27,80)(28,79)(29,73)(30,74)(31,76)(32,75)
(33,81)(34,82)(35,84)(36,83)(37,89)(38,90)(39,92)(40,91)(41,85)(42,86)(43,88)
(44,87)(45,93)(46,94)(47,96)(48,95);;
s2 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)(41,44)
(42,43)(45,48)(46,47)(49,64)(50,63)(51,62)(52,61)(53,68)(54,67)(55,66)(56,65)
(57,72)(58,71)(59,70)(60,69)(73,88)(74,87)(75,86)(76,85)(77,92)(78,91)(79,90)
(80,89)(81,96)(82,95)(83,94)(84,93);;
s3 := (97,98);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36)(38,39)(41,45)(42,47)(43,46)(44,48)
(49,73)(50,75)(51,74)(52,76)(53,81)(54,83)(55,82)(56,84)(57,77)(58,79)(59,78)
(60,80)(61,85)(62,87)(63,86)(64,88)(65,93)(66,95)(67,94)(68,96)(69,89)(70,91)
(71,90)(72,92);
s1 := Sym(98)!( 1,53)( 2,54)( 3,56)( 4,55)( 5,49)( 6,50)( 7,52)( 8,51)( 9,57)
(10,58)(11,60)(12,59)(13,65)(14,66)(15,68)(16,67)(17,61)(18,62)(19,64)(20,63)
(21,69)(22,70)(23,72)(24,71)(25,77)(26,78)(27,80)(28,79)(29,73)(30,74)(31,76)
(32,75)(33,81)(34,82)(35,84)(36,83)(37,89)(38,90)(39,92)(40,91)(41,85)(42,86)
(43,88)(44,87)(45,93)(46,94)(47,96)(48,95);
s2 := Sym(98)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35)(37,40)(38,39)
(41,44)(42,43)(45,48)(46,47)(49,64)(50,63)(51,62)(52,61)(53,68)(54,67)(55,66)
(56,65)(57,72)(58,71)(59,70)(60,69)(73,88)(74,87)(75,86)(76,85)(77,92)(78,91)
(79,90)(80,89)(81,96)(82,95)(83,94)(84,93);
s3 := Sym(98)!(97,98);
poly := sub<Sym(98)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s2*s1*s2*s1*s0*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope