Questions?
See the FAQ
or other info.

Polytope of Type {6,8,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,8,2}*768d
if this polytope has a name.
Group : SmallGroup(768,1089093)
Rank : 4
Schlafli Type : {6,8,2}
Number of vertices, edges, etc : 24, 96, 32, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,8,2}*384a
   4-fold quotients : {6,4,2}*192
   8-fold quotients : {3,4,2}*96, {6,4,2}*96b, {6,4,2}*96c
   16-fold quotients : {3,4,2}*48, {6,2,2}*48
   32-fold quotients : {3,2,2}*24
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5,10)( 6, 9)( 7,11)( 8,12)(15,16)(17,33)(18,34)(19,36)(20,35)
(21,42)(22,41)(23,43)(24,44)(25,38)(26,37)(27,39)(28,40)(29,45)(30,46)(31,48)
(32,47)(51,52)(53,58)(54,57)(55,59)(56,60)(63,64)(65,81)(66,82)(67,84)(68,83)
(69,90)(70,89)(71,91)(72,92)(73,86)(74,85)(75,87)(76,88)(77,93)(78,94)(79,96)
(80,95);;
s1 := ( 1,17)( 2,19)( 3,18)( 4,20)( 5,24)( 6,22)( 7,23)( 8,21)( 9,32)(10,30)
(11,31)(12,29)(13,28)(14,26)(15,27)(16,25)(34,35)(37,40)(41,48)(42,46)(43,47)
(44,45)(49,65)(50,67)(51,66)(52,68)(53,72)(54,70)(55,71)(56,69)(57,80)(58,78)
(59,79)(60,77)(61,76)(62,74)(63,75)(64,73)(82,83)(85,88)(89,96)(90,94)(91,95)
(92,93);;
s2 := ( 1,61)( 2,62)( 3,63)( 4,64)( 5,57)( 6,58)( 7,59)( 8,60)( 9,53)(10,54)
(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,77)(18,78)(19,79)(20,80)(21,73)
(22,74)(23,75)(24,76)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)(32,68)
(33,93)(34,94)(35,95)(36,96)(37,89)(38,90)(39,91)(40,92)(41,85)(42,86)(43,87)
(44,88)(45,81)(46,82)(47,83)(48,84);;
s3 := (97,98);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(98)!( 3, 4)( 5,10)( 6, 9)( 7,11)( 8,12)(15,16)(17,33)(18,34)(19,36)
(20,35)(21,42)(22,41)(23,43)(24,44)(25,38)(26,37)(27,39)(28,40)(29,45)(30,46)
(31,48)(32,47)(51,52)(53,58)(54,57)(55,59)(56,60)(63,64)(65,81)(66,82)(67,84)
(68,83)(69,90)(70,89)(71,91)(72,92)(73,86)(74,85)(75,87)(76,88)(77,93)(78,94)
(79,96)(80,95);
s1 := Sym(98)!( 1,17)( 2,19)( 3,18)( 4,20)( 5,24)( 6,22)( 7,23)( 8,21)( 9,32)
(10,30)(11,31)(12,29)(13,28)(14,26)(15,27)(16,25)(34,35)(37,40)(41,48)(42,46)
(43,47)(44,45)(49,65)(50,67)(51,66)(52,68)(53,72)(54,70)(55,71)(56,69)(57,80)
(58,78)(59,79)(60,77)(61,76)(62,74)(63,75)(64,73)(82,83)(85,88)(89,96)(90,94)
(91,95)(92,93);
s2 := Sym(98)!( 1,61)( 2,62)( 3,63)( 4,64)( 5,57)( 6,58)( 7,59)( 8,60)( 9,53)
(10,54)(11,55)(12,56)(13,49)(14,50)(15,51)(16,52)(17,77)(18,78)(19,79)(20,80)
(21,73)(22,74)(23,75)(24,76)(25,69)(26,70)(27,71)(28,72)(29,65)(30,66)(31,67)
(32,68)(33,93)(34,94)(35,95)(36,96)(37,89)(38,90)(39,91)(40,92)(41,85)(42,86)
(43,87)(44,88)(45,81)(46,82)(47,83)(48,84);
s3 := Sym(98)!(97,98);
poly := sub<Sym(98)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope