Questions?
See the FAQ
or other info.

Polytope of Type {4,3,8}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,3,8}*768b
if this polytope has a name.
Group : SmallGroup(768,1090195)
Rank : 4
Schlafli Type : {4,3,8}
Number of vertices, edges, etc : 8, 24, 48, 16
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,3,8}*384, {4,3,4}*384
   4-fold quotients : {2,3,8}*192, {4,3,4}*192a, {4,3,4}*192b
   8-fold quotients : {2,3,4}*96, {4,3,2}*96, {4,3,4}*96
   16-fold quotients : {2,3,4}*48, {4,3,2}*48
   32-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,217)(  2,218)(  3,219)(  4,220)(  5,221)(  6,222)(  7,223)(  8,224)
(  9,209)( 10,210)( 11,211)( 12,212)( 13,213)( 14,214)( 15,215)( 16,216)
( 17,201)( 18,202)( 19,203)( 20,204)( 21,205)( 22,206)( 23,207)( 24,208)
( 25,193)( 26,194)( 27,195)( 28,196)( 29,197)( 30,198)( 31,199)( 32,200)
( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)( 40,256)
( 41,241)( 42,242)( 43,243)( 44,244)( 45,245)( 46,246)( 47,247)( 48,248)
( 49,233)( 50,234)( 51,235)( 52,236)( 53,237)( 54,238)( 55,239)( 56,240)
( 57,225)( 58,226)( 59,227)( 60,228)( 61,229)( 62,230)( 63,231)( 64,232)
( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)( 72,288)
( 73,273)( 74,274)( 75,275)( 76,276)( 77,277)( 78,278)( 79,279)( 80,280)
( 81,265)( 82,266)( 83,267)( 84,268)( 85,269)( 86,270)( 87,271)( 88,272)
( 89,257)( 90,258)( 91,259)( 92,260)( 93,261)( 94,262)( 95,263)( 96,264)
( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)(104,320)
(105,305)(106,306)(107,307)(108,308)(109,309)(110,310)(111,311)(112,312)
(113,297)(114,298)(115,299)(116,300)(117,301)(118,302)(119,303)(120,304)
(121,289)(122,290)(123,291)(124,292)(125,293)(126,294)(127,295)(128,296)
(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)(136,352)
(137,337)(138,338)(139,339)(140,340)(141,341)(142,342)(143,343)(144,344)
(145,329)(146,330)(147,331)(148,332)(149,333)(150,334)(151,335)(152,336)
(153,321)(154,322)(155,323)(156,324)(157,325)(158,326)(159,327)(160,328)
(161,377)(162,378)(163,379)(164,380)(165,381)(166,382)(167,383)(168,384)
(169,369)(170,370)(171,371)(172,372)(173,373)(174,374)(175,375)(176,376)
(177,361)(178,362)(179,363)(180,364)(181,365)(182,366)(183,367)(184,368)
(185,353)(186,354)(187,355)(188,356)(189,357)(190,358)(191,359)(192,360);;
s1 := (  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 17, 25)( 18, 26)
( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)( 34, 66)
( 35, 68)( 36, 67)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)( 42, 74)
( 43, 76)( 44, 75)( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)( 50, 90)
( 51, 92)( 52, 91)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)( 58, 82)
( 59, 84)( 60, 83)( 61, 87)( 62, 88)( 63, 85)( 64, 86)( 97, 98)(101,104)
(102,103)(105,106)(109,112)(110,111)(113,122)(114,121)(115,123)(116,124)
(117,128)(118,127)(119,126)(120,125)(129,162)(130,161)(131,163)(132,164)
(133,168)(134,167)(135,166)(136,165)(137,170)(138,169)(139,171)(140,172)
(141,176)(142,175)(143,174)(144,173)(145,186)(146,185)(147,187)(148,188)
(149,192)(150,191)(151,190)(152,189)(153,178)(154,177)(155,179)(156,180)
(157,184)(158,183)(159,182)(160,181)(195,196)(197,199)(198,200)(203,204)
(205,207)(206,208)(209,217)(210,218)(211,220)(212,219)(213,223)(214,224)
(215,221)(216,222)(225,257)(226,258)(227,260)(228,259)(229,263)(230,264)
(231,261)(232,262)(233,265)(234,266)(235,268)(236,267)(237,271)(238,272)
(239,269)(240,270)(241,281)(242,282)(243,284)(244,283)(245,287)(246,288)
(247,285)(248,286)(249,273)(250,274)(251,276)(252,275)(253,279)(254,280)
(255,277)(256,278)(289,290)(293,296)(294,295)(297,298)(301,304)(302,303)
(305,314)(306,313)(307,315)(308,316)(309,320)(310,319)(311,318)(312,317)
(321,354)(322,353)(323,355)(324,356)(325,360)(326,359)(327,358)(328,357)
(329,362)(330,361)(331,363)(332,364)(333,368)(334,367)(335,366)(336,365)
(337,378)(338,377)(339,379)(340,380)(341,384)(342,383)(343,382)(344,381)
(345,370)(346,369)(347,371)(348,372)(349,376)(350,375)(351,374)(352,373);;
s2 := (  1, 65)(  2, 66)(  3, 70)(  4, 69)(  5, 68)(  6, 67)(  7, 72)(  8, 71)
(  9, 81)( 10, 82)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 88)( 16, 87)
( 17, 73)( 18, 74)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 80)( 24, 79)
( 25, 89)( 26, 90)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 96)( 32, 95)
( 35, 38)( 36, 37)( 39, 40)( 41, 49)( 42, 50)( 43, 54)( 44, 53)( 45, 52)
( 46, 51)( 47, 56)( 48, 55)( 59, 62)( 60, 61)( 63, 64)( 97,162)( 98,161)
( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,178)(106,177)
(107,181)(108,182)(109,179)(110,180)(111,183)(112,184)(113,170)(114,169)
(115,173)(116,174)(117,171)(118,172)(119,175)(120,176)(121,186)(122,185)
(123,189)(124,190)(125,187)(126,188)(127,191)(128,192)(129,130)(131,133)
(132,134)(137,146)(138,145)(139,149)(140,150)(141,147)(142,148)(143,151)
(144,152)(153,154)(155,157)(156,158)(193,257)(194,258)(195,262)(196,261)
(197,260)(198,259)(199,264)(200,263)(201,273)(202,274)(203,278)(204,277)
(205,276)(206,275)(207,280)(208,279)(209,265)(210,266)(211,270)(212,269)
(213,268)(214,267)(215,272)(216,271)(217,281)(218,282)(219,286)(220,285)
(221,284)(222,283)(223,288)(224,287)(227,230)(228,229)(231,232)(233,241)
(234,242)(235,246)(236,245)(237,244)(238,243)(239,248)(240,247)(251,254)
(252,253)(255,256)(289,354)(290,353)(291,357)(292,358)(293,355)(294,356)
(295,359)(296,360)(297,370)(298,369)(299,373)(300,374)(301,371)(302,372)
(303,375)(304,376)(305,362)(306,361)(307,365)(308,366)(309,363)(310,364)
(311,367)(312,368)(313,378)(314,377)(315,381)(316,382)(317,379)(318,380)
(319,383)(320,384)(321,322)(323,325)(324,326)(329,338)(330,337)(331,341)
(332,342)(333,339)(334,340)(335,343)(336,344)(345,346)(347,349)(348,350);;
s3 := (  1,100)(  2, 99)(  3, 97)(  4, 98)(  5,104)(  6,103)(  7,101)(  8,102)
(  9,108)( 10,107)( 11,105)( 12,106)( 13,112)( 14,111)( 15,109)( 16,110)
( 17,116)( 18,115)( 19,113)( 20,114)( 21,120)( 22,119)( 23,117)( 24,118)
( 25,124)( 26,123)( 27,121)( 28,122)( 29,128)( 30,127)( 31,125)( 32,126)
( 33,132)( 34,131)( 35,129)( 36,130)( 37,136)( 38,135)( 39,133)( 40,134)
( 41,140)( 42,139)( 43,137)( 44,138)( 45,144)( 46,143)( 47,141)( 48,142)
( 49,148)( 50,147)( 51,145)( 52,146)( 53,152)( 54,151)( 55,149)( 56,150)
( 57,156)( 58,155)( 59,153)( 60,154)( 61,160)( 62,159)( 63,157)( 64,158)
( 65,164)( 66,163)( 67,161)( 68,162)( 69,168)( 70,167)( 71,165)( 72,166)
( 73,172)( 74,171)( 75,169)( 76,170)( 77,176)( 78,175)( 79,173)( 80,174)
( 81,180)( 82,179)( 83,177)( 84,178)( 85,184)( 86,183)( 87,181)( 88,182)
( 89,188)( 90,187)( 91,185)( 92,186)( 93,192)( 94,191)( 95,189)( 96,190)
(193,292)(194,291)(195,289)(196,290)(197,296)(198,295)(199,293)(200,294)
(201,300)(202,299)(203,297)(204,298)(205,304)(206,303)(207,301)(208,302)
(209,308)(210,307)(211,305)(212,306)(213,312)(214,311)(215,309)(216,310)
(217,316)(218,315)(219,313)(220,314)(221,320)(222,319)(223,317)(224,318)
(225,324)(226,323)(227,321)(228,322)(229,328)(230,327)(231,325)(232,326)
(233,332)(234,331)(235,329)(236,330)(237,336)(238,335)(239,333)(240,334)
(241,340)(242,339)(243,337)(244,338)(245,344)(246,343)(247,341)(248,342)
(249,348)(250,347)(251,345)(252,346)(253,352)(254,351)(255,349)(256,350)
(257,356)(258,355)(259,353)(260,354)(261,360)(262,359)(263,357)(264,358)
(265,364)(266,363)(267,361)(268,362)(269,368)(270,367)(271,365)(272,366)
(273,372)(274,371)(275,369)(276,370)(277,376)(278,375)(279,373)(280,374)
(281,380)(282,379)(283,377)(284,378)(285,384)(286,383)(287,381)(288,382);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1,217)(  2,218)(  3,219)(  4,220)(  5,221)(  6,222)(  7,223)
(  8,224)(  9,209)( 10,210)( 11,211)( 12,212)( 13,213)( 14,214)( 15,215)
( 16,216)( 17,201)( 18,202)( 19,203)( 20,204)( 21,205)( 22,206)( 23,207)
( 24,208)( 25,193)( 26,194)( 27,195)( 28,196)( 29,197)( 30,198)( 31,199)
( 32,200)( 33,249)( 34,250)( 35,251)( 36,252)( 37,253)( 38,254)( 39,255)
( 40,256)( 41,241)( 42,242)( 43,243)( 44,244)( 45,245)( 46,246)( 47,247)
( 48,248)( 49,233)( 50,234)( 51,235)( 52,236)( 53,237)( 54,238)( 55,239)
( 56,240)( 57,225)( 58,226)( 59,227)( 60,228)( 61,229)( 62,230)( 63,231)
( 64,232)( 65,281)( 66,282)( 67,283)( 68,284)( 69,285)( 70,286)( 71,287)
( 72,288)( 73,273)( 74,274)( 75,275)( 76,276)( 77,277)( 78,278)( 79,279)
( 80,280)( 81,265)( 82,266)( 83,267)( 84,268)( 85,269)( 86,270)( 87,271)
( 88,272)( 89,257)( 90,258)( 91,259)( 92,260)( 93,261)( 94,262)( 95,263)
( 96,264)( 97,313)( 98,314)( 99,315)(100,316)(101,317)(102,318)(103,319)
(104,320)(105,305)(106,306)(107,307)(108,308)(109,309)(110,310)(111,311)
(112,312)(113,297)(114,298)(115,299)(116,300)(117,301)(118,302)(119,303)
(120,304)(121,289)(122,290)(123,291)(124,292)(125,293)(126,294)(127,295)
(128,296)(129,345)(130,346)(131,347)(132,348)(133,349)(134,350)(135,351)
(136,352)(137,337)(138,338)(139,339)(140,340)(141,341)(142,342)(143,343)
(144,344)(145,329)(146,330)(147,331)(148,332)(149,333)(150,334)(151,335)
(152,336)(153,321)(154,322)(155,323)(156,324)(157,325)(158,326)(159,327)
(160,328)(161,377)(162,378)(163,379)(164,380)(165,381)(166,382)(167,383)
(168,384)(169,369)(170,370)(171,371)(172,372)(173,373)(174,374)(175,375)
(176,376)(177,361)(178,362)(179,363)(180,364)(181,365)(182,366)(183,367)
(184,368)(185,353)(186,354)(187,355)(188,356)(189,357)(190,358)(191,359)
(192,360);
s1 := Sym(384)!(  3,  4)(  5,  7)(  6,  8)( 11, 12)( 13, 15)( 14, 16)( 17, 25)
( 18, 26)( 19, 28)( 20, 27)( 21, 31)( 22, 32)( 23, 29)( 24, 30)( 33, 65)
( 34, 66)( 35, 68)( 36, 67)( 37, 71)( 38, 72)( 39, 69)( 40, 70)( 41, 73)
( 42, 74)( 43, 76)( 44, 75)( 45, 79)( 46, 80)( 47, 77)( 48, 78)( 49, 89)
( 50, 90)( 51, 92)( 52, 91)( 53, 95)( 54, 96)( 55, 93)( 56, 94)( 57, 81)
( 58, 82)( 59, 84)( 60, 83)( 61, 87)( 62, 88)( 63, 85)( 64, 86)( 97, 98)
(101,104)(102,103)(105,106)(109,112)(110,111)(113,122)(114,121)(115,123)
(116,124)(117,128)(118,127)(119,126)(120,125)(129,162)(130,161)(131,163)
(132,164)(133,168)(134,167)(135,166)(136,165)(137,170)(138,169)(139,171)
(140,172)(141,176)(142,175)(143,174)(144,173)(145,186)(146,185)(147,187)
(148,188)(149,192)(150,191)(151,190)(152,189)(153,178)(154,177)(155,179)
(156,180)(157,184)(158,183)(159,182)(160,181)(195,196)(197,199)(198,200)
(203,204)(205,207)(206,208)(209,217)(210,218)(211,220)(212,219)(213,223)
(214,224)(215,221)(216,222)(225,257)(226,258)(227,260)(228,259)(229,263)
(230,264)(231,261)(232,262)(233,265)(234,266)(235,268)(236,267)(237,271)
(238,272)(239,269)(240,270)(241,281)(242,282)(243,284)(244,283)(245,287)
(246,288)(247,285)(248,286)(249,273)(250,274)(251,276)(252,275)(253,279)
(254,280)(255,277)(256,278)(289,290)(293,296)(294,295)(297,298)(301,304)
(302,303)(305,314)(306,313)(307,315)(308,316)(309,320)(310,319)(311,318)
(312,317)(321,354)(322,353)(323,355)(324,356)(325,360)(326,359)(327,358)
(328,357)(329,362)(330,361)(331,363)(332,364)(333,368)(334,367)(335,366)
(336,365)(337,378)(338,377)(339,379)(340,380)(341,384)(342,383)(343,382)
(344,381)(345,370)(346,369)(347,371)(348,372)(349,376)(350,375)(351,374)
(352,373);
s2 := Sym(384)!(  1, 65)(  2, 66)(  3, 70)(  4, 69)(  5, 68)(  6, 67)(  7, 72)
(  8, 71)(  9, 81)( 10, 82)( 11, 86)( 12, 85)( 13, 84)( 14, 83)( 15, 88)
( 16, 87)( 17, 73)( 18, 74)( 19, 78)( 20, 77)( 21, 76)( 22, 75)( 23, 80)
( 24, 79)( 25, 89)( 26, 90)( 27, 94)( 28, 93)( 29, 92)( 30, 91)( 31, 96)
( 32, 95)( 35, 38)( 36, 37)( 39, 40)( 41, 49)( 42, 50)( 43, 54)( 44, 53)
( 45, 52)( 46, 51)( 47, 56)( 48, 55)( 59, 62)( 60, 61)( 63, 64)( 97,162)
( 98,161)( 99,165)(100,166)(101,163)(102,164)(103,167)(104,168)(105,178)
(106,177)(107,181)(108,182)(109,179)(110,180)(111,183)(112,184)(113,170)
(114,169)(115,173)(116,174)(117,171)(118,172)(119,175)(120,176)(121,186)
(122,185)(123,189)(124,190)(125,187)(126,188)(127,191)(128,192)(129,130)
(131,133)(132,134)(137,146)(138,145)(139,149)(140,150)(141,147)(142,148)
(143,151)(144,152)(153,154)(155,157)(156,158)(193,257)(194,258)(195,262)
(196,261)(197,260)(198,259)(199,264)(200,263)(201,273)(202,274)(203,278)
(204,277)(205,276)(206,275)(207,280)(208,279)(209,265)(210,266)(211,270)
(212,269)(213,268)(214,267)(215,272)(216,271)(217,281)(218,282)(219,286)
(220,285)(221,284)(222,283)(223,288)(224,287)(227,230)(228,229)(231,232)
(233,241)(234,242)(235,246)(236,245)(237,244)(238,243)(239,248)(240,247)
(251,254)(252,253)(255,256)(289,354)(290,353)(291,357)(292,358)(293,355)
(294,356)(295,359)(296,360)(297,370)(298,369)(299,373)(300,374)(301,371)
(302,372)(303,375)(304,376)(305,362)(306,361)(307,365)(308,366)(309,363)
(310,364)(311,367)(312,368)(313,378)(314,377)(315,381)(316,382)(317,379)
(318,380)(319,383)(320,384)(321,322)(323,325)(324,326)(329,338)(330,337)
(331,341)(332,342)(333,339)(334,340)(335,343)(336,344)(345,346)(347,349)
(348,350);
s3 := Sym(384)!(  1,100)(  2, 99)(  3, 97)(  4, 98)(  5,104)(  6,103)(  7,101)
(  8,102)(  9,108)( 10,107)( 11,105)( 12,106)( 13,112)( 14,111)( 15,109)
( 16,110)( 17,116)( 18,115)( 19,113)( 20,114)( 21,120)( 22,119)( 23,117)
( 24,118)( 25,124)( 26,123)( 27,121)( 28,122)( 29,128)( 30,127)( 31,125)
( 32,126)( 33,132)( 34,131)( 35,129)( 36,130)( 37,136)( 38,135)( 39,133)
( 40,134)( 41,140)( 42,139)( 43,137)( 44,138)( 45,144)( 46,143)( 47,141)
( 48,142)( 49,148)( 50,147)( 51,145)( 52,146)( 53,152)( 54,151)( 55,149)
( 56,150)( 57,156)( 58,155)( 59,153)( 60,154)( 61,160)( 62,159)( 63,157)
( 64,158)( 65,164)( 66,163)( 67,161)( 68,162)( 69,168)( 70,167)( 71,165)
( 72,166)( 73,172)( 74,171)( 75,169)( 76,170)( 77,176)( 78,175)( 79,173)
( 80,174)( 81,180)( 82,179)( 83,177)( 84,178)( 85,184)( 86,183)( 87,181)
( 88,182)( 89,188)( 90,187)( 91,185)( 92,186)( 93,192)( 94,191)( 95,189)
( 96,190)(193,292)(194,291)(195,289)(196,290)(197,296)(198,295)(199,293)
(200,294)(201,300)(202,299)(203,297)(204,298)(205,304)(206,303)(207,301)
(208,302)(209,308)(210,307)(211,305)(212,306)(213,312)(214,311)(215,309)
(216,310)(217,316)(218,315)(219,313)(220,314)(221,320)(222,319)(223,317)
(224,318)(225,324)(226,323)(227,321)(228,322)(229,328)(230,327)(231,325)
(232,326)(233,332)(234,331)(235,329)(236,330)(237,336)(238,335)(239,333)
(240,334)(241,340)(242,339)(243,337)(244,338)(245,344)(246,343)(247,341)
(248,342)(249,348)(250,347)(251,345)(252,346)(253,352)(254,351)(255,349)
(256,350)(257,356)(258,355)(259,353)(260,354)(261,360)(262,359)(263,357)
(264,358)(265,364)(266,363)(267,361)(268,362)(269,368)(270,367)(271,365)
(272,366)(273,372)(274,371)(275,369)(276,370)(277,376)(278,375)(279,373)
(280,374)(281,380)(282,379)(283,377)(284,378)(285,384)(286,383)(287,381)
(288,382);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2 >; 
 
References : None.
to this polytope