Questions?
See the FAQ
or other info.

Polytope of Type {4,4,24}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,4,24}*768b
if this polytope has a name.
Group : SmallGroup(768,200909)
Rank : 4
Schlafli Type : {4,4,24}
Number of vertices, edges, etc : 4, 8, 48, 24
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,4,12}*384, {2,4,24}*384b
   3-fold quotients : {4,4,8}*256b
   4-fold quotients : {2,4,12}*192a, {4,2,12}*192, {4,4,6}*192
   6-fold quotients : {4,4,4}*128, {2,4,8}*128b
   8-fold quotients : {2,2,12}*96, {2,4,6}*96a, {4,2,6}*96
   12-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64
   16-fold quotients : {4,2,3}*48, {2,2,6}*48
   24-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
   32-fold quotients : {2,2,3}*24
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,241)(  2,242)(  3,243)(  4,244)(  5,245)(  6,246)(  7,247)(  8,248)
(  9,249)( 10,250)( 11,251)( 12,252)( 13,253)( 14,254)( 15,255)( 16,256)
( 17,257)( 18,258)( 19,259)( 20,260)( 21,261)( 22,262)( 23,263)( 24,264)
( 25,265)( 26,266)( 27,267)( 28,268)( 29,269)( 30,270)( 31,271)( 32,272)
( 33,273)( 34,274)( 35,275)( 36,276)( 37,277)( 38,278)( 39,279)( 40,280)
( 41,281)( 42,282)( 43,283)( 44,284)( 45,285)( 46,286)( 47,287)( 48,288)
( 49,193)( 50,194)( 51,195)( 52,196)( 53,197)( 54,198)( 55,199)( 56,200)
( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)( 64,208)
( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)( 72,216)
( 73,217)( 74,218)( 75,219)( 76,220)( 77,221)( 78,222)( 79,223)( 80,224)
( 81,225)( 82,226)( 83,227)( 84,228)( 85,229)( 86,230)( 87,231)( 88,232)
( 89,233)( 90,234)( 91,235)( 92,236)( 93,237)( 94,238)( 95,239)( 96,240)
( 97,343)( 98,344)( 99,345)(100,346)(101,347)(102,348)(103,337)(104,338)
(105,339)(106,340)(107,341)(108,342)(109,355)(110,356)(111,357)(112,358)
(113,359)(114,360)(115,349)(116,350)(117,351)(118,352)(119,353)(120,354)
(121,367)(122,368)(123,369)(124,370)(125,371)(126,372)(127,361)(128,362)
(129,363)(130,364)(131,365)(132,366)(133,379)(134,380)(135,381)(136,382)
(137,383)(138,384)(139,373)(140,374)(141,375)(142,376)(143,377)(144,378)
(145,295)(146,296)(147,297)(148,298)(149,299)(150,300)(151,289)(152,290)
(153,291)(154,292)(155,293)(156,294)(157,307)(158,308)(159,309)(160,310)
(161,311)(162,312)(163,301)(164,302)(165,303)(166,304)(167,305)(168,306)
(169,319)(170,320)(171,321)(172,322)(173,323)(174,324)(175,313)(176,314)
(177,315)(178,316)(179,317)(180,318)(181,331)(182,332)(183,333)(184,334)
(185,335)(186,336)(187,325)(188,326)(189,327)(190,328)(191,329)(192,330);;
s1 := (  1,145)(  2,146)(  3,147)(  4,148)(  5,149)(  6,150)(  7,151)(  8,152)
(  9,153)( 10,154)( 11,155)( 12,156)( 13,160)( 14,161)( 15,162)( 16,157)
( 17,158)( 18,159)( 19,166)( 20,167)( 21,168)( 22,163)( 23,164)( 24,165)
( 25,172)( 26,173)( 27,174)( 28,169)( 29,170)( 30,171)( 31,178)( 32,179)
( 33,180)( 34,175)( 35,176)( 36,177)( 37,181)( 38,182)( 39,183)( 40,184)
( 41,185)( 42,186)( 43,187)( 44,188)( 45,189)( 46,190)( 47,191)( 48,192)
( 49, 97)( 50, 98)( 51, 99)( 52,100)( 53,101)( 54,102)( 55,103)( 56,104)
( 57,105)( 58,106)( 59,107)( 60,108)( 61,112)( 62,113)( 63,114)( 64,109)
( 65,110)( 66,111)( 67,118)( 68,119)( 69,120)( 70,115)( 71,116)( 72,117)
( 73,124)( 74,125)( 75,126)( 76,121)( 77,122)( 78,123)( 79,130)( 80,131)
( 81,132)( 82,127)( 83,128)( 84,129)( 85,133)( 86,134)( 87,135)( 88,136)
( 89,137)( 90,138)( 91,139)( 92,140)( 93,141)( 94,142)( 95,143)( 96,144)
(193,337)(194,338)(195,339)(196,340)(197,341)(198,342)(199,343)(200,344)
(201,345)(202,346)(203,347)(204,348)(205,352)(206,353)(207,354)(208,349)
(209,350)(210,351)(211,358)(212,359)(213,360)(214,355)(215,356)(216,357)
(217,364)(218,365)(219,366)(220,361)(221,362)(222,363)(223,370)(224,371)
(225,372)(226,367)(227,368)(228,369)(229,373)(230,374)(231,375)(232,376)
(233,377)(234,378)(235,379)(236,380)(237,381)(238,382)(239,383)(240,384)
(241,289)(242,290)(243,291)(244,292)(245,293)(246,294)(247,295)(248,296)
(249,297)(250,298)(251,299)(252,300)(253,304)(254,305)(255,306)(256,301)
(257,302)(258,303)(259,310)(260,311)(261,312)(262,307)(263,308)(264,309)
(265,316)(266,317)(267,318)(268,313)(269,314)(270,315)(271,322)(272,323)
(273,324)(274,319)(275,320)(276,321)(277,325)(278,326)(279,327)(280,328)
(281,329)(282,330)(283,331)(284,332)(285,333)(286,334)(287,335)(288,336);;
s2 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)( 19, 22)
( 20, 24)( 21, 23)( 25, 28)( 26, 30)( 27, 29)( 31, 34)( 32, 36)( 33, 35)
( 38, 39)( 41, 42)( 44, 45)( 47, 48)( 49, 73)( 50, 75)( 51, 74)( 52, 76)
( 53, 78)( 54, 77)( 55, 79)( 56, 81)( 57, 80)( 58, 82)( 59, 84)( 60, 83)
( 61, 88)( 62, 90)( 63, 89)( 64, 85)( 65, 87)( 66, 86)( 67, 94)( 68, 96)
( 69, 95)( 70, 91)( 71, 93)( 72, 92)( 97,109)( 98,111)( 99,110)(100,112)
(101,114)(102,113)(103,115)(104,117)(105,116)(106,118)(107,120)(108,119)
(121,136)(122,138)(123,137)(124,133)(125,135)(126,134)(127,142)(128,144)
(129,143)(130,139)(131,141)(132,140)(145,181)(146,183)(147,182)(148,184)
(149,186)(150,185)(151,187)(152,189)(153,188)(154,190)(155,192)(156,191)
(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)(163,175)(164,177)
(165,176)(166,178)(167,180)(168,179)(193,217)(194,219)(195,218)(196,220)
(197,222)(198,221)(199,223)(200,225)(201,224)(202,226)(203,228)(204,227)
(205,232)(206,234)(207,233)(208,229)(209,231)(210,230)(211,238)(212,240)
(213,239)(214,235)(215,237)(216,236)(242,243)(245,246)(248,249)(251,252)
(253,256)(254,258)(255,257)(259,262)(260,264)(261,263)(265,268)(266,270)
(267,269)(271,274)(272,276)(273,275)(278,279)(281,282)(284,285)(287,288)
(289,325)(290,327)(291,326)(292,328)(293,330)(294,329)(295,331)(296,333)
(297,332)(298,334)(299,336)(300,335)(301,313)(302,315)(303,314)(304,316)
(305,318)(306,317)(307,319)(308,321)(309,320)(310,322)(311,324)(312,323)
(337,349)(338,351)(339,350)(340,352)(341,354)(342,353)(343,355)(344,357)
(345,356)(346,358)(347,360)(348,359)(361,376)(362,378)(363,377)(364,373)
(365,375)(366,374)(367,382)(368,384)(369,383)(370,379)(371,381)(372,380);;
s3 := (  1, 51)(  2, 50)(  3, 49)(  4, 54)(  5, 53)(  6, 52)(  7, 57)(  8, 56)
(  9, 55)( 10, 60)( 11, 59)( 12, 58)( 13, 63)( 14, 62)( 15, 61)( 16, 66)
( 17, 65)( 18, 64)( 19, 69)( 20, 68)( 21, 67)( 22, 72)( 23, 71)( 24, 70)
( 25, 78)( 26, 77)( 27, 76)( 28, 75)( 29, 74)( 30, 73)( 31, 84)( 32, 83)
( 33, 82)( 34, 81)( 35, 80)( 36, 79)( 37, 90)( 38, 89)( 39, 88)( 40, 87)
( 41, 86)( 42, 85)( 43, 96)( 44, 95)( 45, 94)( 46, 93)( 47, 92)( 48, 91)
( 97,147)( 98,146)( 99,145)(100,150)(101,149)(102,148)(103,153)(104,152)
(105,151)(106,156)(107,155)(108,154)(109,159)(110,158)(111,157)(112,162)
(113,161)(114,160)(115,165)(116,164)(117,163)(118,168)(119,167)(120,166)
(121,174)(122,173)(123,172)(124,171)(125,170)(126,169)(127,180)(128,179)
(129,178)(130,177)(131,176)(132,175)(133,186)(134,185)(135,184)(136,183)
(137,182)(138,181)(139,192)(140,191)(141,190)(142,189)(143,188)(144,187)
(193,243)(194,242)(195,241)(196,246)(197,245)(198,244)(199,249)(200,248)
(201,247)(202,252)(203,251)(204,250)(205,255)(206,254)(207,253)(208,258)
(209,257)(210,256)(211,261)(212,260)(213,259)(214,264)(215,263)(216,262)
(217,270)(218,269)(219,268)(220,267)(221,266)(222,265)(223,276)(224,275)
(225,274)(226,273)(227,272)(228,271)(229,282)(230,281)(231,280)(232,279)
(233,278)(234,277)(235,288)(236,287)(237,286)(238,285)(239,284)(240,283)
(289,339)(290,338)(291,337)(292,342)(293,341)(294,340)(295,345)(296,344)
(297,343)(298,348)(299,347)(300,346)(301,351)(302,350)(303,349)(304,354)
(305,353)(306,352)(307,357)(308,356)(309,355)(310,360)(311,359)(312,358)
(313,366)(314,365)(315,364)(316,363)(317,362)(318,361)(319,372)(320,371)
(321,370)(322,369)(323,368)(324,367)(325,378)(326,377)(327,376)(328,375)
(329,374)(330,373)(331,384)(332,383)(333,382)(334,381)(335,380)(336,379);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1,241)(  2,242)(  3,243)(  4,244)(  5,245)(  6,246)(  7,247)
(  8,248)(  9,249)( 10,250)( 11,251)( 12,252)( 13,253)( 14,254)( 15,255)
( 16,256)( 17,257)( 18,258)( 19,259)( 20,260)( 21,261)( 22,262)( 23,263)
( 24,264)( 25,265)( 26,266)( 27,267)( 28,268)( 29,269)( 30,270)( 31,271)
( 32,272)( 33,273)( 34,274)( 35,275)( 36,276)( 37,277)( 38,278)( 39,279)
( 40,280)( 41,281)( 42,282)( 43,283)( 44,284)( 45,285)( 46,286)( 47,287)
( 48,288)( 49,193)( 50,194)( 51,195)( 52,196)( 53,197)( 54,198)( 55,199)
( 56,200)( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)
( 64,208)( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)
( 72,216)( 73,217)( 74,218)( 75,219)( 76,220)( 77,221)( 78,222)( 79,223)
( 80,224)( 81,225)( 82,226)( 83,227)( 84,228)( 85,229)( 86,230)( 87,231)
( 88,232)( 89,233)( 90,234)( 91,235)( 92,236)( 93,237)( 94,238)( 95,239)
( 96,240)( 97,343)( 98,344)( 99,345)(100,346)(101,347)(102,348)(103,337)
(104,338)(105,339)(106,340)(107,341)(108,342)(109,355)(110,356)(111,357)
(112,358)(113,359)(114,360)(115,349)(116,350)(117,351)(118,352)(119,353)
(120,354)(121,367)(122,368)(123,369)(124,370)(125,371)(126,372)(127,361)
(128,362)(129,363)(130,364)(131,365)(132,366)(133,379)(134,380)(135,381)
(136,382)(137,383)(138,384)(139,373)(140,374)(141,375)(142,376)(143,377)
(144,378)(145,295)(146,296)(147,297)(148,298)(149,299)(150,300)(151,289)
(152,290)(153,291)(154,292)(155,293)(156,294)(157,307)(158,308)(159,309)
(160,310)(161,311)(162,312)(163,301)(164,302)(165,303)(166,304)(167,305)
(168,306)(169,319)(170,320)(171,321)(172,322)(173,323)(174,324)(175,313)
(176,314)(177,315)(178,316)(179,317)(180,318)(181,331)(182,332)(183,333)
(184,334)(185,335)(186,336)(187,325)(188,326)(189,327)(190,328)(191,329)
(192,330);
s1 := Sym(384)!(  1,145)(  2,146)(  3,147)(  4,148)(  5,149)(  6,150)(  7,151)
(  8,152)(  9,153)( 10,154)( 11,155)( 12,156)( 13,160)( 14,161)( 15,162)
( 16,157)( 17,158)( 18,159)( 19,166)( 20,167)( 21,168)( 22,163)( 23,164)
( 24,165)( 25,172)( 26,173)( 27,174)( 28,169)( 29,170)( 30,171)( 31,178)
( 32,179)( 33,180)( 34,175)( 35,176)( 36,177)( 37,181)( 38,182)( 39,183)
( 40,184)( 41,185)( 42,186)( 43,187)( 44,188)( 45,189)( 46,190)( 47,191)
( 48,192)( 49, 97)( 50, 98)( 51, 99)( 52,100)( 53,101)( 54,102)( 55,103)
( 56,104)( 57,105)( 58,106)( 59,107)( 60,108)( 61,112)( 62,113)( 63,114)
( 64,109)( 65,110)( 66,111)( 67,118)( 68,119)( 69,120)( 70,115)( 71,116)
( 72,117)( 73,124)( 74,125)( 75,126)( 76,121)( 77,122)( 78,123)( 79,130)
( 80,131)( 81,132)( 82,127)( 83,128)( 84,129)( 85,133)( 86,134)( 87,135)
( 88,136)( 89,137)( 90,138)( 91,139)( 92,140)( 93,141)( 94,142)( 95,143)
( 96,144)(193,337)(194,338)(195,339)(196,340)(197,341)(198,342)(199,343)
(200,344)(201,345)(202,346)(203,347)(204,348)(205,352)(206,353)(207,354)
(208,349)(209,350)(210,351)(211,358)(212,359)(213,360)(214,355)(215,356)
(216,357)(217,364)(218,365)(219,366)(220,361)(221,362)(222,363)(223,370)
(224,371)(225,372)(226,367)(227,368)(228,369)(229,373)(230,374)(231,375)
(232,376)(233,377)(234,378)(235,379)(236,380)(237,381)(238,382)(239,383)
(240,384)(241,289)(242,290)(243,291)(244,292)(245,293)(246,294)(247,295)
(248,296)(249,297)(250,298)(251,299)(252,300)(253,304)(254,305)(255,306)
(256,301)(257,302)(258,303)(259,310)(260,311)(261,312)(262,307)(263,308)
(264,309)(265,316)(266,317)(267,318)(268,313)(269,314)(270,315)(271,322)
(272,323)(273,324)(274,319)(275,320)(276,321)(277,325)(278,326)(279,327)
(280,328)(281,329)(282,330)(283,331)(284,332)(285,333)(286,334)(287,335)
(288,336);
s2 := Sym(384)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 19, 22)( 20, 24)( 21, 23)( 25, 28)( 26, 30)( 27, 29)( 31, 34)( 32, 36)
( 33, 35)( 38, 39)( 41, 42)( 44, 45)( 47, 48)( 49, 73)( 50, 75)( 51, 74)
( 52, 76)( 53, 78)( 54, 77)( 55, 79)( 56, 81)( 57, 80)( 58, 82)( 59, 84)
( 60, 83)( 61, 88)( 62, 90)( 63, 89)( 64, 85)( 65, 87)( 66, 86)( 67, 94)
( 68, 96)( 69, 95)( 70, 91)( 71, 93)( 72, 92)( 97,109)( 98,111)( 99,110)
(100,112)(101,114)(102,113)(103,115)(104,117)(105,116)(106,118)(107,120)
(108,119)(121,136)(122,138)(123,137)(124,133)(125,135)(126,134)(127,142)
(128,144)(129,143)(130,139)(131,141)(132,140)(145,181)(146,183)(147,182)
(148,184)(149,186)(150,185)(151,187)(152,189)(153,188)(154,190)(155,192)
(156,191)(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)(163,175)
(164,177)(165,176)(166,178)(167,180)(168,179)(193,217)(194,219)(195,218)
(196,220)(197,222)(198,221)(199,223)(200,225)(201,224)(202,226)(203,228)
(204,227)(205,232)(206,234)(207,233)(208,229)(209,231)(210,230)(211,238)
(212,240)(213,239)(214,235)(215,237)(216,236)(242,243)(245,246)(248,249)
(251,252)(253,256)(254,258)(255,257)(259,262)(260,264)(261,263)(265,268)
(266,270)(267,269)(271,274)(272,276)(273,275)(278,279)(281,282)(284,285)
(287,288)(289,325)(290,327)(291,326)(292,328)(293,330)(294,329)(295,331)
(296,333)(297,332)(298,334)(299,336)(300,335)(301,313)(302,315)(303,314)
(304,316)(305,318)(306,317)(307,319)(308,321)(309,320)(310,322)(311,324)
(312,323)(337,349)(338,351)(339,350)(340,352)(341,354)(342,353)(343,355)
(344,357)(345,356)(346,358)(347,360)(348,359)(361,376)(362,378)(363,377)
(364,373)(365,375)(366,374)(367,382)(368,384)(369,383)(370,379)(371,381)
(372,380);
s3 := Sym(384)!(  1, 51)(  2, 50)(  3, 49)(  4, 54)(  5, 53)(  6, 52)(  7, 57)
(  8, 56)(  9, 55)( 10, 60)( 11, 59)( 12, 58)( 13, 63)( 14, 62)( 15, 61)
( 16, 66)( 17, 65)( 18, 64)( 19, 69)( 20, 68)( 21, 67)( 22, 72)( 23, 71)
( 24, 70)( 25, 78)( 26, 77)( 27, 76)( 28, 75)( 29, 74)( 30, 73)( 31, 84)
( 32, 83)( 33, 82)( 34, 81)( 35, 80)( 36, 79)( 37, 90)( 38, 89)( 39, 88)
( 40, 87)( 41, 86)( 42, 85)( 43, 96)( 44, 95)( 45, 94)( 46, 93)( 47, 92)
( 48, 91)( 97,147)( 98,146)( 99,145)(100,150)(101,149)(102,148)(103,153)
(104,152)(105,151)(106,156)(107,155)(108,154)(109,159)(110,158)(111,157)
(112,162)(113,161)(114,160)(115,165)(116,164)(117,163)(118,168)(119,167)
(120,166)(121,174)(122,173)(123,172)(124,171)(125,170)(126,169)(127,180)
(128,179)(129,178)(130,177)(131,176)(132,175)(133,186)(134,185)(135,184)
(136,183)(137,182)(138,181)(139,192)(140,191)(141,190)(142,189)(143,188)
(144,187)(193,243)(194,242)(195,241)(196,246)(197,245)(198,244)(199,249)
(200,248)(201,247)(202,252)(203,251)(204,250)(205,255)(206,254)(207,253)
(208,258)(209,257)(210,256)(211,261)(212,260)(213,259)(214,264)(215,263)
(216,262)(217,270)(218,269)(219,268)(220,267)(221,266)(222,265)(223,276)
(224,275)(225,274)(226,273)(227,272)(228,271)(229,282)(230,281)(231,280)
(232,279)(233,278)(234,277)(235,288)(236,287)(237,286)(238,285)(239,284)
(240,283)(289,339)(290,338)(291,337)(292,342)(293,341)(294,340)(295,345)
(296,344)(297,343)(298,348)(299,347)(300,346)(301,351)(302,350)(303,349)
(304,354)(305,353)(306,352)(307,357)(308,356)(309,355)(310,360)(311,359)
(312,358)(313,366)(314,365)(315,364)(316,363)(317,362)(318,361)(319,372)
(320,371)(321,370)(322,369)(323,368)(324,367)(325,378)(326,377)(327,376)
(328,375)(329,374)(330,373)(331,384)(332,383)(333,382)(334,381)(335,380)
(336,379);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s1*s2*s1*s3*s2*s3*s2*s1*s2, 
s1*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2 >; 
 
References : None.
to this polytope