Questions?
See the FAQ
or other info.

Polytope of Type {4,24,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,24,4}*768d
Also Known As : {{4,24|2},{24,4|2}}. if this polytope has another name.
Group : SmallGroup(768,201310)
Rank : 4
Schlafli Type : {4,24,4}
Number of vertices, edges, etc : 4, 48, 48, 4
Order of s0s1s2s3 : 24
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,12,4}*384a, {2,24,4}*384a, {4,24,2}*384a
   3-fold quotients : {4,8,4}*256d
   4-fold quotients : {2,12,4}*192a, {4,12,2}*192a, {4,6,4}*192a, {2,24,2}*192
   6-fold quotients : {4,4,4}*128, {2,8,4}*128a, {4,8,2}*128a
   8-fold quotients : {2,12,2}*96, {2,6,4}*96a, {4,6,2}*96a
   12-fold quotients : {2,4,4}*64, {4,4,2}*64, {4,2,4}*64, {2,8,2}*64
   16-fold quotients : {2,6,2}*48
   24-fold quotients : {2,2,4}*32, {2,4,2}*32, {4,2,2}*32
   32-fold quotients : {2,3,2}*24
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 49)(  2, 50)(  3, 51)(  4, 52)(  5, 53)(  6, 54)(  7, 55)(  8, 56)
(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)( 14, 62)( 15, 63)( 16, 64)
( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)( 24, 72)
( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)( 32, 80)
( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 85)( 38, 86)( 39, 87)( 40, 88)
( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 93)( 46, 94)( 47, 95)( 48, 96)
( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)(104,152)
(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)(112,160)
(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)(120,168)
(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)(128,176)
(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)(136,184)
(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)(144,192)
(193,241)(194,242)(195,243)(196,244)(197,245)(198,246)(199,247)(200,248)
(201,249)(202,250)(203,251)(204,252)(205,253)(206,254)(207,255)(208,256)
(209,257)(210,258)(211,259)(212,260)(213,261)(214,262)(215,263)(216,264)
(217,265)(218,266)(219,267)(220,268)(221,269)(222,270)(223,271)(224,272)
(225,273)(226,274)(227,275)(228,276)(229,277)(230,278)(231,279)(232,280)
(233,281)(234,282)(235,283)(236,284)(237,285)(238,286)(239,287)(240,288)
(289,337)(290,338)(291,339)(292,340)(293,341)(294,342)(295,343)(296,344)
(297,345)(298,346)(299,347)(300,348)(301,349)(302,350)(303,351)(304,352)
(305,353)(306,354)(307,355)(308,356)(309,357)(310,358)(311,359)(312,360)
(313,361)(314,362)(315,363)(316,364)(317,365)(318,366)(319,367)(320,368)
(321,369)(322,370)(323,371)(324,372)(325,373)(326,374)(327,375)(328,376)
(329,377)(330,378)(331,379)(332,380)(333,381)(334,382)(335,383)(336,384);;
s1 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)( 19, 22)
( 20, 24)( 21, 23)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 40)( 38, 42)
( 39, 41)( 43, 46)( 44, 48)( 45, 47)( 49, 73)( 50, 75)( 51, 74)( 52, 76)
( 53, 78)( 54, 77)( 55, 79)( 56, 81)( 57, 80)( 58, 82)( 59, 84)( 60, 83)
( 61, 88)( 62, 90)( 63, 89)( 64, 85)( 65, 87)( 66, 86)( 67, 94)( 68, 96)
( 69, 95)( 70, 91)( 71, 93)( 72, 92)( 97,109)( 98,111)( 99,110)(100,112)
(101,114)(102,113)(103,115)(104,117)(105,116)(106,118)(107,120)(108,119)
(121,133)(122,135)(123,134)(124,136)(125,138)(126,137)(127,139)(128,141)
(129,140)(130,142)(131,144)(132,143)(145,181)(146,183)(147,182)(148,184)
(149,186)(150,185)(151,187)(152,189)(153,188)(154,190)(155,192)(156,191)
(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)(163,175)(164,177)
(165,176)(166,178)(167,180)(168,179)(193,217)(194,219)(195,218)(196,220)
(197,222)(198,221)(199,223)(200,225)(201,224)(202,226)(203,228)(204,227)
(205,232)(206,234)(207,233)(208,229)(209,231)(210,230)(211,238)(212,240)
(213,239)(214,235)(215,237)(216,236)(242,243)(245,246)(248,249)(251,252)
(253,256)(254,258)(255,257)(259,262)(260,264)(261,263)(266,267)(269,270)
(272,273)(275,276)(277,280)(278,282)(279,281)(283,286)(284,288)(285,287)
(289,325)(290,327)(291,326)(292,328)(293,330)(294,329)(295,331)(296,333)
(297,332)(298,334)(299,336)(300,335)(301,313)(302,315)(303,314)(304,316)
(305,318)(306,317)(307,319)(308,321)(309,320)(310,322)(311,324)(312,323)
(337,349)(338,351)(339,350)(340,352)(341,354)(342,353)(343,355)(344,357)
(345,356)(346,358)(347,360)(348,359)(361,373)(362,375)(363,374)(364,376)
(365,378)(366,377)(367,379)(368,381)(369,380)(370,382)(371,384)(372,383);;
s2 := (  1, 99)(  2, 98)(  3, 97)(  4,102)(  5,101)(  6,100)(  7,105)(  8,104)
(  9,103)( 10,108)( 11,107)( 12,106)( 13,114)( 14,113)( 15,112)( 16,111)
( 17,110)( 18,109)( 19,120)( 20,119)( 21,118)( 22,117)( 23,116)( 24,115)
( 25,123)( 26,122)( 27,121)( 28,126)( 29,125)( 30,124)( 31,129)( 32,128)
( 33,127)( 34,132)( 35,131)( 36,130)( 37,138)( 38,137)( 39,136)( 40,135)
( 41,134)( 42,133)( 43,144)( 44,143)( 45,142)( 46,141)( 47,140)( 48,139)
( 49,147)( 50,146)( 51,145)( 52,150)( 53,149)( 54,148)( 55,153)( 56,152)
( 57,151)( 58,156)( 59,155)( 60,154)( 61,162)( 62,161)( 63,160)( 64,159)
( 65,158)( 66,157)( 67,168)( 68,167)( 69,166)( 70,165)( 71,164)( 72,163)
( 73,171)( 74,170)( 75,169)( 76,174)( 77,173)( 78,172)( 79,177)( 80,176)
( 81,175)( 82,180)( 83,179)( 84,178)( 85,186)( 86,185)( 87,184)( 88,183)
( 89,182)( 90,181)( 91,192)( 92,191)( 93,190)( 94,189)( 95,188)( 96,187)
(193,291)(194,290)(195,289)(196,294)(197,293)(198,292)(199,297)(200,296)
(201,295)(202,300)(203,299)(204,298)(205,306)(206,305)(207,304)(208,303)
(209,302)(210,301)(211,312)(212,311)(213,310)(214,309)(215,308)(216,307)
(217,315)(218,314)(219,313)(220,318)(221,317)(222,316)(223,321)(224,320)
(225,319)(226,324)(227,323)(228,322)(229,330)(230,329)(231,328)(232,327)
(233,326)(234,325)(235,336)(236,335)(237,334)(238,333)(239,332)(240,331)
(241,339)(242,338)(243,337)(244,342)(245,341)(246,340)(247,345)(248,344)
(249,343)(250,348)(251,347)(252,346)(253,354)(254,353)(255,352)(256,351)
(257,350)(258,349)(259,360)(260,359)(261,358)(262,357)(263,356)(264,355)
(265,363)(266,362)(267,361)(268,366)(269,365)(270,364)(271,369)(272,368)
(273,367)(274,372)(275,371)(276,370)(277,378)(278,377)(279,376)(280,375)
(281,374)(282,373)(283,384)(284,383)(285,382)(286,381)(287,380)(288,379);;
s3 := (  1,241)(  2,242)(  3,243)(  4,244)(  5,245)(  6,246)(  7,247)(  8,248)
(  9,249)( 10,250)( 11,251)( 12,252)( 13,253)( 14,254)( 15,255)( 16,256)
( 17,257)( 18,258)( 19,259)( 20,260)( 21,261)( 22,262)( 23,263)( 24,264)
( 25,265)( 26,266)( 27,267)( 28,268)( 29,269)( 30,270)( 31,271)( 32,272)
( 33,273)( 34,274)( 35,275)( 36,276)( 37,277)( 38,278)( 39,279)( 40,280)
( 41,281)( 42,282)( 43,283)( 44,284)( 45,285)( 46,286)( 47,287)( 48,288)
( 49,193)( 50,194)( 51,195)( 52,196)( 53,197)( 54,198)( 55,199)( 56,200)
( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)( 64,208)
( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)( 72,216)
( 73,217)( 74,218)( 75,219)( 76,220)( 77,221)( 78,222)( 79,223)( 80,224)
( 81,225)( 82,226)( 83,227)( 84,228)( 85,229)( 86,230)( 87,231)( 88,232)
( 89,233)( 90,234)( 91,235)( 92,236)( 93,237)( 94,238)( 95,239)( 96,240)
( 97,343)( 98,344)( 99,345)(100,346)(101,347)(102,348)(103,337)(104,338)
(105,339)(106,340)(107,341)(108,342)(109,355)(110,356)(111,357)(112,358)
(113,359)(114,360)(115,349)(116,350)(117,351)(118,352)(119,353)(120,354)
(121,367)(122,368)(123,369)(124,370)(125,371)(126,372)(127,361)(128,362)
(129,363)(130,364)(131,365)(132,366)(133,379)(134,380)(135,381)(136,382)
(137,383)(138,384)(139,373)(140,374)(141,375)(142,376)(143,377)(144,378)
(145,295)(146,296)(147,297)(148,298)(149,299)(150,300)(151,289)(152,290)
(153,291)(154,292)(155,293)(156,294)(157,307)(158,308)(159,309)(160,310)
(161,311)(162,312)(163,301)(164,302)(165,303)(166,304)(167,305)(168,306)
(169,319)(170,320)(171,321)(172,322)(173,323)(174,324)(175,313)(176,314)
(177,315)(178,316)(179,317)(180,318)(181,331)(182,332)(183,333)(184,334)
(185,335)(186,336)(187,325)(188,326)(189,327)(190,328)(191,329)(192,330);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 49)(  2, 50)(  3, 51)(  4, 52)(  5, 53)(  6, 54)(  7, 55)
(  8, 56)(  9, 57)( 10, 58)( 11, 59)( 12, 60)( 13, 61)( 14, 62)( 15, 63)
( 16, 64)( 17, 65)( 18, 66)( 19, 67)( 20, 68)( 21, 69)( 22, 70)( 23, 71)
( 24, 72)( 25, 73)( 26, 74)( 27, 75)( 28, 76)( 29, 77)( 30, 78)( 31, 79)
( 32, 80)( 33, 81)( 34, 82)( 35, 83)( 36, 84)( 37, 85)( 38, 86)( 39, 87)
( 40, 88)( 41, 89)( 42, 90)( 43, 91)( 44, 92)( 45, 93)( 46, 94)( 47, 95)
( 48, 96)( 97,145)( 98,146)( 99,147)(100,148)(101,149)(102,150)(103,151)
(104,152)(105,153)(106,154)(107,155)(108,156)(109,157)(110,158)(111,159)
(112,160)(113,161)(114,162)(115,163)(116,164)(117,165)(118,166)(119,167)
(120,168)(121,169)(122,170)(123,171)(124,172)(125,173)(126,174)(127,175)
(128,176)(129,177)(130,178)(131,179)(132,180)(133,181)(134,182)(135,183)
(136,184)(137,185)(138,186)(139,187)(140,188)(141,189)(142,190)(143,191)
(144,192)(193,241)(194,242)(195,243)(196,244)(197,245)(198,246)(199,247)
(200,248)(201,249)(202,250)(203,251)(204,252)(205,253)(206,254)(207,255)
(208,256)(209,257)(210,258)(211,259)(212,260)(213,261)(214,262)(215,263)
(216,264)(217,265)(218,266)(219,267)(220,268)(221,269)(222,270)(223,271)
(224,272)(225,273)(226,274)(227,275)(228,276)(229,277)(230,278)(231,279)
(232,280)(233,281)(234,282)(235,283)(236,284)(237,285)(238,286)(239,287)
(240,288)(289,337)(290,338)(291,339)(292,340)(293,341)(294,342)(295,343)
(296,344)(297,345)(298,346)(299,347)(300,348)(301,349)(302,350)(303,351)
(304,352)(305,353)(306,354)(307,355)(308,356)(309,357)(310,358)(311,359)
(312,360)(313,361)(314,362)(315,363)(316,364)(317,365)(318,366)(319,367)
(320,368)(321,369)(322,370)(323,371)(324,372)(325,373)(326,374)(327,375)
(328,376)(329,377)(330,378)(331,379)(332,380)(333,381)(334,382)(335,383)
(336,384);
s1 := Sym(384)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 19, 22)( 20, 24)( 21, 23)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 37, 40)
( 38, 42)( 39, 41)( 43, 46)( 44, 48)( 45, 47)( 49, 73)( 50, 75)( 51, 74)
( 52, 76)( 53, 78)( 54, 77)( 55, 79)( 56, 81)( 57, 80)( 58, 82)( 59, 84)
( 60, 83)( 61, 88)( 62, 90)( 63, 89)( 64, 85)( 65, 87)( 66, 86)( 67, 94)
( 68, 96)( 69, 95)( 70, 91)( 71, 93)( 72, 92)( 97,109)( 98,111)( 99,110)
(100,112)(101,114)(102,113)(103,115)(104,117)(105,116)(106,118)(107,120)
(108,119)(121,133)(122,135)(123,134)(124,136)(125,138)(126,137)(127,139)
(128,141)(129,140)(130,142)(131,144)(132,143)(145,181)(146,183)(147,182)
(148,184)(149,186)(150,185)(151,187)(152,189)(153,188)(154,190)(155,192)
(156,191)(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)(163,175)
(164,177)(165,176)(166,178)(167,180)(168,179)(193,217)(194,219)(195,218)
(196,220)(197,222)(198,221)(199,223)(200,225)(201,224)(202,226)(203,228)
(204,227)(205,232)(206,234)(207,233)(208,229)(209,231)(210,230)(211,238)
(212,240)(213,239)(214,235)(215,237)(216,236)(242,243)(245,246)(248,249)
(251,252)(253,256)(254,258)(255,257)(259,262)(260,264)(261,263)(266,267)
(269,270)(272,273)(275,276)(277,280)(278,282)(279,281)(283,286)(284,288)
(285,287)(289,325)(290,327)(291,326)(292,328)(293,330)(294,329)(295,331)
(296,333)(297,332)(298,334)(299,336)(300,335)(301,313)(302,315)(303,314)
(304,316)(305,318)(306,317)(307,319)(308,321)(309,320)(310,322)(311,324)
(312,323)(337,349)(338,351)(339,350)(340,352)(341,354)(342,353)(343,355)
(344,357)(345,356)(346,358)(347,360)(348,359)(361,373)(362,375)(363,374)
(364,376)(365,378)(366,377)(367,379)(368,381)(369,380)(370,382)(371,384)
(372,383);
s2 := Sym(384)!(  1, 99)(  2, 98)(  3, 97)(  4,102)(  5,101)(  6,100)(  7,105)
(  8,104)(  9,103)( 10,108)( 11,107)( 12,106)( 13,114)( 14,113)( 15,112)
( 16,111)( 17,110)( 18,109)( 19,120)( 20,119)( 21,118)( 22,117)( 23,116)
( 24,115)( 25,123)( 26,122)( 27,121)( 28,126)( 29,125)( 30,124)( 31,129)
( 32,128)( 33,127)( 34,132)( 35,131)( 36,130)( 37,138)( 38,137)( 39,136)
( 40,135)( 41,134)( 42,133)( 43,144)( 44,143)( 45,142)( 46,141)( 47,140)
( 48,139)( 49,147)( 50,146)( 51,145)( 52,150)( 53,149)( 54,148)( 55,153)
( 56,152)( 57,151)( 58,156)( 59,155)( 60,154)( 61,162)( 62,161)( 63,160)
( 64,159)( 65,158)( 66,157)( 67,168)( 68,167)( 69,166)( 70,165)( 71,164)
( 72,163)( 73,171)( 74,170)( 75,169)( 76,174)( 77,173)( 78,172)( 79,177)
( 80,176)( 81,175)( 82,180)( 83,179)( 84,178)( 85,186)( 86,185)( 87,184)
( 88,183)( 89,182)( 90,181)( 91,192)( 92,191)( 93,190)( 94,189)( 95,188)
( 96,187)(193,291)(194,290)(195,289)(196,294)(197,293)(198,292)(199,297)
(200,296)(201,295)(202,300)(203,299)(204,298)(205,306)(206,305)(207,304)
(208,303)(209,302)(210,301)(211,312)(212,311)(213,310)(214,309)(215,308)
(216,307)(217,315)(218,314)(219,313)(220,318)(221,317)(222,316)(223,321)
(224,320)(225,319)(226,324)(227,323)(228,322)(229,330)(230,329)(231,328)
(232,327)(233,326)(234,325)(235,336)(236,335)(237,334)(238,333)(239,332)
(240,331)(241,339)(242,338)(243,337)(244,342)(245,341)(246,340)(247,345)
(248,344)(249,343)(250,348)(251,347)(252,346)(253,354)(254,353)(255,352)
(256,351)(257,350)(258,349)(259,360)(260,359)(261,358)(262,357)(263,356)
(264,355)(265,363)(266,362)(267,361)(268,366)(269,365)(270,364)(271,369)
(272,368)(273,367)(274,372)(275,371)(276,370)(277,378)(278,377)(279,376)
(280,375)(281,374)(282,373)(283,384)(284,383)(285,382)(286,381)(287,380)
(288,379);
s3 := Sym(384)!(  1,241)(  2,242)(  3,243)(  4,244)(  5,245)(  6,246)(  7,247)
(  8,248)(  9,249)( 10,250)( 11,251)( 12,252)( 13,253)( 14,254)( 15,255)
( 16,256)( 17,257)( 18,258)( 19,259)( 20,260)( 21,261)( 22,262)( 23,263)
( 24,264)( 25,265)( 26,266)( 27,267)( 28,268)( 29,269)( 30,270)( 31,271)
( 32,272)( 33,273)( 34,274)( 35,275)( 36,276)( 37,277)( 38,278)( 39,279)
( 40,280)( 41,281)( 42,282)( 43,283)( 44,284)( 45,285)( 46,286)( 47,287)
( 48,288)( 49,193)( 50,194)( 51,195)( 52,196)( 53,197)( 54,198)( 55,199)
( 56,200)( 57,201)( 58,202)( 59,203)( 60,204)( 61,205)( 62,206)( 63,207)
( 64,208)( 65,209)( 66,210)( 67,211)( 68,212)( 69,213)( 70,214)( 71,215)
( 72,216)( 73,217)( 74,218)( 75,219)( 76,220)( 77,221)( 78,222)( 79,223)
( 80,224)( 81,225)( 82,226)( 83,227)( 84,228)( 85,229)( 86,230)( 87,231)
( 88,232)( 89,233)( 90,234)( 91,235)( 92,236)( 93,237)( 94,238)( 95,239)
( 96,240)( 97,343)( 98,344)( 99,345)(100,346)(101,347)(102,348)(103,337)
(104,338)(105,339)(106,340)(107,341)(108,342)(109,355)(110,356)(111,357)
(112,358)(113,359)(114,360)(115,349)(116,350)(117,351)(118,352)(119,353)
(120,354)(121,367)(122,368)(123,369)(124,370)(125,371)(126,372)(127,361)
(128,362)(129,363)(130,364)(131,365)(132,366)(133,379)(134,380)(135,381)
(136,382)(137,383)(138,384)(139,373)(140,374)(141,375)(142,376)(143,377)
(144,378)(145,295)(146,296)(147,297)(148,298)(149,299)(150,300)(151,289)
(152,290)(153,291)(154,292)(155,293)(156,294)(157,307)(158,308)(159,309)
(160,310)(161,311)(162,312)(163,301)(164,302)(165,303)(166,304)(167,305)
(168,306)(169,319)(170,320)(171,321)(172,322)(173,323)(174,324)(175,313)
(176,314)(177,315)(178,316)(179,317)(180,318)(181,331)(182,332)(183,333)
(184,334)(185,335)(186,336)(187,325)(188,326)(189,327)(190,328)(191,329)
(192,330);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope