Questions?
See the FAQ
or other info.

Polytope of Type {4,16,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,16,6}*768b
if this polytope has a name.
Group : SmallGroup(768,323449)
Rank : 4
Schlafli Type : {4,16,6}
Number of vertices, edges, etc : 4, 32, 48, 6
Order of s0s1s2s3 : 48
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,8,6}*384a
   3-fold quotients : {4,16,2}*256b
   4-fold quotients : {4,4,6}*192, {2,8,6}*192
   6-fold quotients : {4,8,2}*128a
   8-fold quotients : {2,4,6}*96a, {4,2,6}*96
   12-fold quotients : {4,4,2}*64, {2,8,2}*64
   16-fold quotients : {4,2,3}*48, {2,2,6}*48
   24-fold quotients : {2,4,2}*32, {4,2,2}*32
   32-fold quotients : {2,2,3}*24
   48-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)(  8,104)
(  9,105)( 10,106)( 11,107)( 12,108)( 13,109)( 14,110)( 15,111)( 16,112)
( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)( 24,120)
( 25,124)( 26,125)( 27,126)( 28,121)( 29,122)( 30,123)( 31,130)( 32,131)
( 33,132)( 34,127)( 35,128)( 36,129)( 37,136)( 38,137)( 39,138)( 40,133)
( 41,134)( 42,135)( 43,142)( 44,143)( 45,144)( 46,139)( 47,140)( 48,141)
( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)( 56,152)
( 57,153)( 58,154)( 59,155)( 60,156)( 61,157)( 62,158)( 63,159)( 64,160)
( 65,161)( 66,162)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)( 72,168)
( 73,172)( 74,173)( 75,174)( 76,169)( 77,170)( 78,171)( 79,178)( 80,179)
( 81,180)( 82,175)( 83,176)( 84,177)( 85,184)( 86,185)( 87,186)( 88,181)
( 89,182)( 90,183)( 91,190)( 92,191)( 93,192)( 94,187)( 95,188)( 96,189)
(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)(200,296)
(201,297)(202,298)(203,299)(204,300)(205,301)(206,302)(207,303)(208,304)
(209,305)(210,306)(211,307)(212,308)(213,309)(214,310)(215,311)(216,312)
(217,316)(218,317)(219,318)(220,313)(221,314)(222,315)(223,322)(224,323)
(225,324)(226,319)(227,320)(228,321)(229,328)(230,329)(231,330)(232,325)
(233,326)(234,327)(235,334)(236,335)(237,336)(238,331)(239,332)(240,333)
(241,337)(242,338)(243,339)(244,340)(245,341)(246,342)(247,343)(248,344)
(249,345)(250,346)(251,347)(252,348)(253,349)(254,350)(255,351)(256,352)
(257,353)(258,354)(259,355)(260,356)(261,357)(262,358)(263,359)(264,360)
(265,364)(266,365)(267,366)(268,361)(269,362)(270,363)(271,370)(272,371)
(273,372)(274,367)(275,368)(276,369)(277,376)(278,377)(279,378)(280,373)
(281,374)(282,375)(283,382)(284,383)(285,384)(286,379)(287,380)(288,381);;
s1 := (  7, 10)(  8, 11)(  9, 12)( 19, 22)( 20, 23)( 21, 24)( 25, 31)( 26, 32)
( 27, 33)( 28, 34)( 29, 35)( 30, 36)( 37, 43)( 38, 44)( 39, 45)( 40, 46)
( 41, 47)( 42, 48)( 55, 58)( 56, 59)( 57, 60)( 67, 70)( 68, 71)( 69, 72)
( 73, 79)( 74, 80)( 75, 81)( 76, 82)( 77, 83)( 78, 84)( 85, 91)( 86, 92)
( 87, 93)( 88, 94)( 89, 95)( 90, 96)( 97,109)( 98,110)( 99,111)(100,112)
(101,113)(102,114)(103,118)(104,119)(105,120)(106,115)(107,116)(108,117)
(121,139)(122,140)(123,141)(124,142)(125,143)(126,144)(127,133)(128,134)
(129,135)(130,136)(131,137)(132,138)(145,157)(146,158)(147,159)(148,160)
(149,161)(150,162)(151,166)(152,167)(153,168)(154,163)(155,164)(156,165)
(169,187)(170,188)(171,189)(172,190)(173,191)(174,192)(175,181)(176,182)
(177,183)(178,184)(179,185)(180,186)(193,217)(194,218)(195,219)(196,220)
(197,221)(198,222)(199,226)(200,227)(201,228)(202,223)(203,224)(204,225)
(205,229)(206,230)(207,231)(208,232)(209,233)(210,234)(211,238)(212,239)
(213,240)(214,235)(215,236)(216,237)(241,265)(242,266)(243,267)(244,268)
(245,269)(246,270)(247,274)(248,275)(249,276)(250,271)(251,272)(252,273)
(253,277)(254,278)(255,279)(256,280)(257,281)(258,282)(259,286)(260,287)
(261,288)(262,283)(263,284)(264,285)(289,328)(290,329)(291,330)(292,325)
(293,326)(294,327)(295,331)(296,332)(297,333)(298,334)(299,335)(300,336)
(301,316)(302,317)(303,318)(304,313)(305,314)(306,315)(307,319)(308,320)
(309,321)(310,322)(311,323)(312,324)(337,376)(338,377)(339,378)(340,373)
(341,374)(342,375)(343,379)(344,380)(345,381)(346,382)(347,383)(348,384)
(349,364)(350,365)(351,366)(352,361)(353,362)(354,363)(355,367)(356,368)
(357,369)(358,370)(359,371)(360,372);;
s2 := (  1,241)(  2,243)(  3,242)(  4,244)(  5,246)(  6,245)(  7,250)(  8,252)
(  9,251)( 10,247)( 11,249)( 12,248)( 13,256)( 14,258)( 15,257)( 16,253)
( 17,255)( 18,254)( 19,259)( 20,261)( 21,260)( 22,262)( 23,264)( 24,263)
( 25,271)( 26,273)( 27,272)( 28,274)( 29,276)( 30,275)( 31,265)( 32,267)
( 33,266)( 34,268)( 35,270)( 36,269)( 37,286)( 38,288)( 39,287)( 40,283)
( 41,285)( 42,284)( 43,280)( 44,282)( 45,281)( 46,277)( 47,279)( 48,278)
( 49,193)( 50,195)( 51,194)( 52,196)( 53,198)( 54,197)( 55,202)( 56,204)
( 57,203)( 58,199)( 59,201)( 60,200)( 61,208)( 62,210)( 63,209)( 64,205)
( 65,207)( 66,206)( 67,211)( 68,213)( 69,212)( 70,214)( 71,216)( 72,215)
( 73,223)( 74,225)( 75,224)( 76,226)( 77,228)( 78,227)( 79,217)( 80,219)
( 81,218)( 82,220)( 83,222)( 84,221)( 85,238)( 86,240)( 87,239)( 88,235)
( 89,237)( 90,236)( 91,232)( 92,234)( 93,233)( 94,229)( 95,231)( 96,230)
( 97,337)( 98,339)( 99,338)(100,340)(101,342)(102,341)(103,346)(104,348)
(105,347)(106,343)(107,345)(108,344)(109,352)(110,354)(111,353)(112,349)
(113,351)(114,350)(115,355)(116,357)(117,356)(118,358)(119,360)(120,359)
(121,367)(122,369)(123,368)(124,370)(125,372)(126,371)(127,361)(128,363)
(129,362)(130,364)(131,366)(132,365)(133,382)(134,384)(135,383)(136,379)
(137,381)(138,380)(139,376)(140,378)(141,377)(142,373)(143,375)(144,374)
(145,289)(146,291)(147,290)(148,292)(149,294)(150,293)(151,298)(152,300)
(153,299)(154,295)(155,297)(156,296)(157,304)(158,306)(159,305)(160,301)
(161,303)(162,302)(163,307)(164,309)(165,308)(166,310)(167,312)(168,311)
(169,319)(170,321)(171,320)(172,322)(173,324)(174,323)(175,313)(176,315)
(177,314)(178,316)(179,318)(180,317)(181,334)(182,336)(183,335)(184,331)
(185,333)(186,332)(187,328)(188,330)(189,329)(190,325)(191,327)(192,326);;
s3 := (  1, 51)(  2, 50)(  3, 49)(  4, 54)(  5, 53)(  6, 52)(  7, 57)(  8, 56)
(  9, 55)( 10, 60)( 11, 59)( 12, 58)( 13, 63)( 14, 62)( 15, 61)( 16, 66)
( 17, 65)( 18, 64)( 19, 69)( 20, 68)( 21, 67)( 22, 72)( 23, 71)( 24, 70)
( 25, 75)( 26, 74)( 27, 73)( 28, 78)( 29, 77)( 30, 76)( 31, 81)( 32, 80)
( 33, 79)( 34, 84)( 35, 83)( 36, 82)( 37, 87)( 38, 86)( 39, 85)( 40, 90)
( 41, 89)( 42, 88)( 43, 93)( 44, 92)( 45, 91)( 46, 96)( 47, 95)( 48, 94)
( 97,147)( 98,146)( 99,145)(100,150)(101,149)(102,148)(103,153)(104,152)
(105,151)(106,156)(107,155)(108,154)(109,159)(110,158)(111,157)(112,162)
(113,161)(114,160)(115,165)(116,164)(117,163)(118,168)(119,167)(120,166)
(121,171)(122,170)(123,169)(124,174)(125,173)(126,172)(127,177)(128,176)
(129,175)(130,180)(131,179)(132,178)(133,183)(134,182)(135,181)(136,186)
(137,185)(138,184)(139,189)(140,188)(141,187)(142,192)(143,191)(144,190)
(193,243)(194,242)(195,241)(196,246)(197,245)(198,244)(199,249)(200,248)
(201,247)(202,252)(203,251)(204,250)(205,255)(206,254)(207,253)(208,258)
(209,257)(210,256)(211,261)(212,260)(213,259)(214,264)(215,263)(216,262)
(217,267)(218,266)(219,265)(220,270)(221,269)(222,268)(223,273)(224,272)
(225,271)(226,276)(227,275)(228,274)(229,279)(230,278)(231,277)(232,282)
(233,281)(234,280)(235,285)(236,284)(237,283)(238,288)(239,287)(240,286)
(289,339)(290,338)(291,337)(292,342)(293,341)(294,340)(295,345)(296,344)
(297,343)(298,348)(299,347)(300,346)(301,351)(302,350)(303,349)(304,354)
(305,353)(306,352)(307,357)(308,356)(309,355)(310,360)(311,359)(312,358)
(313,363)(314,362)(315,361)(316,366)(317,365)(318,364)(319,369)(320,368)
(321,367)(322,372)(323,371)(324,370)(325,375)(326,374)(327,373)(328,378)
(329,377)(330,376)(331,381)(332,380)(333,379)(334,384)(335,383)(336,382);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(384)!(  1, 97)(  2, 98)(  3, 99)(  4,100)(  5,101)(  6,102)(  7,103)
(  8,104)(  9,105)( 10,106)( 11,107)( 12,108)( 13,109)( 14,110)( 15,111)
( 16,112)( 17,113)( 18,114)( 19,115)( 20,116)( 21,117)( 22,118)( 23,119)
( 24,120)( 25,124)( 26,125)( 27,126)( 28,121)( 29,122)( 30,123)( 31,130)
( 32,131)( 33,132)( 34,127)( 35,128)( 36,129)( 37,136)( 38,137)( 39,138)
( 40,133)( 41,134)( 42,135)( 43,142)( 44,143)( 45,144)( 46,139)( 47,140)
( 48,141)( 49,145)( 50,146)( 51,147)( 52,148)( 53,149)( 54,150)( 55,151)
( 56,152)( 57,153)( 58,154)( 59,155)( 60,156)( 61,157)( 62,158)( 63,159)
( 64,160)( 65,161)( 66,162)( 67,163)( 68,164)( 69,165)( 70,166)( 71,167)
( 72,168)( 73,172)( 74,173)( 75,174)( 76,169)( 77,170)( 78,171)( 79,178)
( 80,179)( 81,180)( 82,175)( 83,176)( 84,177)( 85,184)( 86,185)( 87,186)
( 88,181)( 89,182)( 90,183)( 91,190)( 92,191)( 93,192)( 94,187)( 95,188)
( 96,189)(193,289)(194,290)(195,291)(196,292)(197,293)(198,294)(199,295)
(200,296)(201,297)(202,298)(203,299)(204,300)(205,301)(206,302)(207,303)
(208,304)(209,305)(210,306)(211,307)(212,308)(213,309)(214,310)(215,311)
(216,312)(217,316)(218,317)(219,318)(220,313)(221,314)(222,315)(223,322)
(224,323)(225,324)(226,319)(227,320)(228,321)(229,328)(230,329)(231,330)
(232,325)(233,326)(234,327)(235,334)(236,335)(237,336)(238,331)(239,332)
(240,333)(241,337)(242,338)(243,339)(244,340)(245,341)(246,342)(247,343)
(248,344)(249,345)(250,346)(251,347)(252,348)(253,349)(254,350)(255,351)
(256,352)(257,353)(258,354)(259,355)(260,356)(261,357)(262,358)(263,359)
(264,360)(265,364)(266,365)(267,366)(268,361)(269,362)(270,363)(271,370)
(272,371)(273,372)(274,367)(275,368)(276,369)(277,376)(278,377)(279,378)
(280,373)(281,374)(282,375)(283,382)(284,383)(285,384)(286,379)(287,380)
(288,381);
s1 := Sym(384)!(  7, 10)(  8, 11)(  9, 12)( 19, 22)( 20, 23)( 21, 24)( 25, 31)
( 26, 32)( 27, 33)( 28, 34)( 29, 35)( 30, 36)( 37, 43)( 38, 44)( 39, 45)
( 40, 46)( 41, 47)( 42, 48)( 55, 58)( 56, 59)( 57, 60)( 67, 70)( 68, 71)
( 69, 72)( 73, 79)( 74, 80)( 75, 81)( 76, 82)( 77, 83)( 78, 84)( 85, 91)
( 86, 92)( 87, 93)( 88, 94)( 89, 95)( 90, 96)( 97,109)( 98,110)( 99,111)
(100,112)(101,113)(102,114)(103,118)(104,119)(105,120)(106,115)(107,116)
(108,117)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144)(127,133)
(128,134)(129,135)(130,136)(131,137)(132,138)(145,157)(146,158)(147,159)
(148,160)(149,161)(150,162)(151,166)(152,167)(153,168)(154,163)(155,164)
(156,165)(169,187)(170,188)(171,189)(172,190)(173,191)(174,192)(175,181)
(176,182)(177,183)(178,184)(179,185)(180,186)(193,217)(194,218)(195,219)
(196,220)(197,221)(198,222)(199,226)(200,227)(201,228)(202,223)(203,224)
(204,225)(205,229)(206,230)(207,231)(208,232)(209,233)(210,234)(211,238)
(212,239)(213,240)(214,235)(215,236)(216,237)(241,265)(242,266)(243,267)
(244,268)(245,269)(246,270)(247,274)(248,275)(249,276)(250,271)(251,272)
(252,273)(253,277)(254,278)(255,279)(256,280)(257,281)(258,282)(259,286)
(260,287)(261,288)(262,283)(263,284)(264,285)(289,328)(290,329)(291,330)
(292,325)(293,326)(294,327)(295,331)(296,332)(297,333)(298,334)(299,335)
(300,336)(301,316)(302,317)(303,318)(304,313)(305,314)(306,315)(307,319)
(308,320)(309,321)(310,322)(311,323)(312,324)(337,376)(338,377)(339,378)
(340,373)(341,374)(342,375)(343,379)(344,380)(345,381)(346,382)(347,383)
(348,384)(349,364)(350,365)(351,366)(352,361)(353,362)(354,363)(355,367)
(356,368)(357,369)(358,370)(359,371)(360,372);
s2 := Sym(384)!(  1,241)(  2,243)(  3,242)(  4,244)(  5,246)(  6,245)(  7,250)
(  8,252)(  9,251)( 10,247)( 11,249)( 12,248)( 13,256)( 14,258)( 15,257)
( 16,253)( 17,255)( 18,254)( 19,259)( 20,261)( 21,260)( 22,262)( 23,264)
( 24,263)( 25,271)( 26,273)( 27,272)( 28,274)( 29,276)( 30,275)( 31,265)
( 32,267)( 33,266)( 34,268)( 35,270)( 36,269)( 37,286)( 38,288)( 39,287)
( 40,283)( 41,285)( 42,284)( 43,280)( 44,282)( 45,281)( 46,277)( 47,279)
( 48,278)( 49,193)( 50,195)( 51,194)( 52,196)( 53,198)( 54,197)( 55,202)
( 56,204)( 57,203)( 58,199)( 59,201)( 60,200)( 61,208)( 62,210)( 63,209)
( 64,205)( 65,207)( 66,206)( 67,211)( 68,213)( 69,212)( 70,214)( 71,216)
( 72,215)( 73,223)( 74,225)( 75,224)( 76,226)( 77,228)( 78,227)( 79,217)
( 80,219)( 81,218)( 82,220)( 83,222)( 84,221)( 85,238)( 86,240)( 87,239)
( 88,235)( 89,237)( 90,236)( 91,232)( 92,234)( 93,233)( 94,229)( 95,231)
( 96,230)( 97,337)( 98,339)( 99,338)(100,340)(101,342)(102,341)(103,346)
(104,348)(105,347)(106,343)(107,345)(108,344)(109,352)(110,354)(111,353)
(112,349)(113,351)(114,350)(115,355)(116,357)(117,356)(118,358)(119,360)
(120,359)(121,367)(122,369)(123,368)(124,370)(125,372)(126,371)(127,361)
(128,363)(129,362)(130,364)(131,366)(132,365)(133,382)(134,384)(135,383)
(136,379)(137,381)(138,380)(139,376)(140,378)(141,377)(142,373)(143,375)
(144,374)(145,289)(146,291)(147,290)(148,292)(149,294)(150,293)(151,298)
(152,300)(153,299)(154,295)(155,297)(156,296)(157,304)(158,306)(159,305)
(160,301)(161,303)(162,302)(163,307)(164,309)(165,308)(166,310)(167,312)
(168,311)(169,319)(170,321)(171,320)(172,322)(173,324)(174,323)(175,313)
(176,315)(177,314)(178,316)(179,318)(180,317)(181,334)(182,336)(183,335)
(184,331)(185,333)(186,332)(187,328)(188,330)(189,329)(190,325)(191,327)
(192,326);
s3 := Sym(384)!(  1, 51)(  2, 50)(  3, 49)(  4, 54)(  5, 53)(  6, 52)(  7, 57)
(  8, 56)(  9, 55)( 10, 60)( 11, 59)( 12, 58)( 13, 63)( 14, 62)( 15, 61)
( 16, 66)( 17, 65)( 18, 64)( 19, 69)( 20, 68)( 21, 67)( 22, 72)( 23, 71)
( 24, 70)( 25, 75)( 26, 74)( 27, 73)( 28, 78)( 29, 77)( 30, 76)( 31, 81)
( 32, 80)( 33, 79)( 34, 84)( 35, 83)( 36, 82)( 37, 87)( 38, 86)( 39, 85)
( 40, 90)( 41, 89)( 42, 88)( 43, 93)( 44, 92)( 45, 91)( 46, 96)( 47, 95)
( 48, 94)( 97,147)( 98,146)( 99,145)(100,150)(101,149)(102,148)(103,153)
(104,152)(105,151)(106,156)(107,155)(108,154)(109,159)(110,158)(111,157)
(112,162)(113,161)(114,160)(115,165)(116,164)(117,163)(118,168)(119,167)
(120,166)(121,171)(122,170)(123,169)(124,174)(125,173)(126,172)(127,177)
(128,176)(129,175)(130,180)(131,179)(132,178)(133,183)(134,182)(135,181)
(136,186)(137,185)(138,184)(139,189)(140,188)(141,187)(142,192)(143,191)
(144,190)(193,243)(194,242)(195,241)(196,246)(197,245)(198,244)(199,249)
(200,248)(201,247)(202,252)(203,251)(204,250)(205,255)(206,254)(207,253)
(208,258)(209,257)(210,256)(211,261)(212,260)(213,259)(214,264)(215,263)
(216,262)(217,267)(218,266)(219,265)(220,270)(221,269)(222,268)(223,273)
(224,272)(225,271)(226,276)(227,275)(228,274)(229,279)(230,278)(231,277)
(232,282)(233,281)(234,280)(235,285)(236,284)(237,283)(238,288)(239,287)
(240,286)(289,339)(290,338)(291,337)(292,342)(293,341)(294,340)(295,345)
(296,344)(297,343)(298,348)(299,347)(300,346)(301,351)(302,350)(303,349)
(304,354)(305,353)(306,352)(307,357)(308,356)(309,355)(310,360)(311,359)
(312,358)(313,363)(314,362)(315,361)(316,366)(317,365)(318,364)(319,369)
(320,368)(321,367)(322,372)(323,371)(324,370)(325,375)(326,374)(327,373)
(328,378)(329,377)(330,376)(331,381)(332,380)(333,379)(334,384)(335,383)
(336,382);
poly := sub<Sym(384)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s2*s0*s1*s2*s1*s0*s1*s0*s2*s1*s2*s1*s0*s1, 
s0*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1 >; 
 
References : None.
to this polytope