Questions?
See the FAQ
or other info.

# Polytope of Type {16,24}

Atlas Canonical Name : {16,24}*768c
if this polytope has a name.
Group : SmallGroup(768,82993)
Rank : 3
Schlafli Type : {16,24}
Number of vertices, edges, etc : 16, 192, 24
Order of s0s1s2 : 48
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {8,24}*384d, {16,12}*384a
3-fold quotients : {16,8}*256c
4-fold quotients : {4,24}*192b, {8,12}*192a, {16,6}*192
6-fold quotients : {8,8}*128c, {16,4}*128a
8-fold quotients : {4,12}*96a, {8,6}*96
12-fold quotients : {8,4}*64a, {4,8}*64b, {16,2}*64
16-fold quotients : {2,12}*48, {4,6}*48a
24-fold quotients : {4,4}*32, {8,2}*32
32-fold quotients : {2,6}*24
48-fold quotients : {2,4}*16, {4,2}*16
64-fold quotients : {2,3}*12
96-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
```s0 := (  1,193)(  2,194)(  3,195)(  4,196)(  5,197)(  6,198)(  7,199)(  8,200)
(  9,201)( 10,202)( 11,203)( 12,204)( 13,208)( 14,209)( 15,210)( 16,205)
( 17,206)( 18,207)( 19,214)( 20,215)( 21,216)( 22,211)( 23,212)( 24,213)
( 25,223)( 26,224)( 27,225)( 28,226)( 29,227)( 30,228)( 31,217)( 32,218)
( 33,219)( 34,220)( 35,221)( 36,222)( 37,238)( 38,239)( 39,240)( 40,235)
( 41,236)( 42,237)( 43,232)( 44,233)( 45,234)( 46,229)( 47,230)( 48,231)
( 49,253)( 50,254)( 51,255)( 52,256)( 53,257)( 54,258)( 55,259)( 56,260)
( 57,261)( 58,262)( 59,263)( 60,264)( 61,241)( 62,242)( 63,243)( 64,244)
( 65,245)( 66,246)( 67,247)( 68,248)( 69,249)( 70,250)( 71,251)( 72,252)
( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,277)( 80,278)
( 81,279)( 82,280)( 83,281)( 84,282)( 85,271)( 86,272)( 87,273)( 88,274)
( 89,275)( 90,276)( 91,265)( 92,266)( 93,267)( 94,268)( 95,269)( 96,270)
( 97,289)( 98,290)( 99,291)(100,292)(101,293)(102,294)(103,295)(104,296)
(105,297)(106,298)(107,299)(108,300)(109,304)(110,305)(111,306)(112,301)
(113,302)(114,303)(115,310)(116,311)(117,312)(118,307)(119,308)(120,309)
(121,319)(122,320)(123,321)(124,322)(125,323)(126,324)(127,313)(128,314)
(129,315)(130,316)(131,317)(132,318)(133,334)(134,335)(135,336)(136,331)
(137,332)(138,333)(139,328)(140,329)(141,330)(142,325)(143,326)(144,327)
(145,349)(146,350)(147,351)(148,352)(149,353)(150,354)(151,355)(152,356)
(153,357)(154,358)(155,359)(156,360)(157,337)(158,338)(159,339)(160,340)
(161,341)(162,342)(163,343)(164,344)(165,345)(166,346)(167,347)(168,348)
(169,379)(170,380)(171,381)(172,382)(173,383)(174,384)(175,373)(176,374)
(177,375)(178,376)(179,377)(180,378)(181,367)(182,368)(183,369)(184,370)
(185,371)(186,372)(187,361)(188,362)(189,363)(190,364)(191,365)(192,366);;
s1 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)( 19, 22)
( 20, 24)( 21, 23)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)( 30, 35)
( 37, 46)( 38, 48)( 39, 47)( 40, 43)( 41, 45)( 42, 44)( 49, 61)( 50, 63)
( 51, 62)( 52, 64)( 53, 66)( 54, 65)( 55, 67)( 56, 69)( 57, 68)( 58, 70)
( 59, 72)( 60, 71)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)( 78, 95)
( 79, 85)( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)( 98,123)
( 99,122)(100,124)(101,126)(102,125)(103,127)(104,129)(105,128)(106,130)
(107,132)(108,131)(109,136)(110,138)(111,137)(112,133)(113,135)(114,134)
(115,142)(116,144)(117,143)(118,139)(119,141)(120,140)(145,181)(146,183)
(147,182)(148,184)(149,186)(150,185)(151,187)(152,189)(153,188)(154,190)
(155,192)(156,191)(157,169)(158,171)(159,170)(160,172)(161,174)(162,173)
(163,175)(164,177)(165,176)(166,178)(167,180)(168,179)(193,241)(194,243)
(195,242)(196,244)(197,246)(198,245)(199,247)(200,249)(201,248)(202,250)
(203,252)(204,251)(205,256)(206,258)(207,257)(208,253)(209,255)(210,254)
(211,262)(212,264)(213,263)(214,259)(215,261)(216,260)(217,271)(218,273)
(219,272)(220,274)(221,276)(222,275)(223,265)(224,267)(225,266)(226,268)
(227,270)(228,269)(229,286)(230,288)(231,287)(232,283)(233,285)(234,284)
(235,280)(236,282)(237,281)(238,277)(239,279)(240,278)(289,367)(290,369)
(291,368)(292,370)(293,372)(294,371)(295,361)(296,363)(297,362)(298,364)
(299,366)(300,365)(301,382)(302,384)(303,383)(304,379)(305,381)(306,380)
(307,376)(308,378)(309,377)(310,373)(311,375)(312,374)(313,343)(314,345)
(315,344)(316,346)(317,348)(318,347)(319,337)(320,339)(321,338)(322,340)
(323,342)(324,341)(325,358)(326,360)(327,359)(328,355)(329,357)(330,356)
(331,352)(332,354)(333,353)(334,349)(335,351)(336,350);;
s2 := (  1, 99)(  2, 98)(  3, 97)(  4,102)(  5,101)(  6,100)(  7,105)(  8,104)
(  9,103)( 10,108)( 11,107)( 12,106)( 13,111)( 14,110)( 15,109)( 16,114)
( 17,113)( 18,112)( 19,117)( 20,116)( 21,115)( 22,120)( 23,119)( 24,118)
( 25,129)( 26,128)( 27,127)( 28,132)( 29,131)( 30,130)( 31,123)( 32,122)
( 33,121)( 34,126)( 35,125)( 36,124)( 37,141)( 38,140)( 39,139)( 40,144)
( 41,143)( 42,142)( 43,135)( 44,134)( 45,133)( 46,138)( 47,137)( 48,136)
( 49,153)( 50,152)( 51,151)( 52,156)( 53,155)( 54,154)( 55,147)( 56,146)
( 57,145)( 58,150)( 59,149)( 60,148)( 61,165)( 62,164)( 63,163)( 64,168)
( 65,167)( 66,166)( 67,159)( 68,158)( 69,157)( 70,162)( 71,161)( 72,160)
( 73,171)( 74,170)( 75,169)( 76,174)( 77,173)( 78,172)( 79,177)( 80,176)
( 81,175)( 82,180)( 83,179)( 84,178)( 85,183)( 86,182)( 87,181)( 88,186)
( 89,185)( 90,184)( 91,189)( 92,188)( 93,187)( 94,192)( 95,191)( 96,190)
(193,291)(194,290)(195,289)(196,294)(197,293)(198,292)(199,297)(200,296)
(201,295)(202,300)(203,299)(204,298)(205,303)(206,302)(207,301)(208,306)
(209,305)(210,304)(211,309)(212,308)(213,307)(214,312)(215,311)(216,310)
(217,321)(218,320)(219,319)(220,324)(221,323)(222,322)(223,315)(224,314)
(225,313)(226,318)(227,317)(228,316)(229,333)(230,332)(231,331)(232,336)
(233,335)(234,334)(235,327)(236,326)(237,325)(238,330)(239,329)(240,328)
(241,345)(242,344)(243,343)(244,348)(245,347)(246,346)(247,339)(248,338)
(249,337)(250,342)(251,341)(252,340)(253,357)(254,356)(255,355)(256,360)
(257,359)(258,358)(259,351)(260,350)(261,349)(262,354)(263,353)(264,352)
(265,363)(266,362)(267,361)(268,366)(269,365)(270,364)(271,369)(272,368)
(273,367)(274,372)(275,371)(276,370)(277,375)(278,374)(279,373)(280,378)
(281,377)(282,376)(283,381)(284,380)(285,379)(286,384)(287,383)(288,382);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(384)!(  1,193)(  2,194)(  3,195)(  4,196)(  5,197)(  6,198)(  7,199)
(  8,200)(  9,201)( 10,202)( 11,203)( 12,204)( 13,208)( 14,209)( 15,210)
( 16,205)( 17,206)( 18,207)( 19,214)( 20,215)( 21,216)( 22,211)( 23,212)
( 24,213)( 25,223)( 26,224)( 27,225)( 28,226)( 29,227)( 30,228)( 31,217)
( 32,218)( 33,219)( 34,220)( 35,221)( 36,222)( 37,238)( 38,239)( 39,240)
( 40,235)( 41,236)( 42,237)( 43,232)( 44,233)( 45,234)( 46,229)( 47,230)
( 48,231)( 49,253)( 50,254)( 51,255)( 52,256)( 53,257)( 54,258)( 55,259)
( 56,260)( 57,261)( 58,262)( 59,263)( 60,264)( 61,241)( 62,242)( 63,243)
( 64,244)( 65,245)( 66,246)( 67,247)( 68,248)( 69,249)( 70,250)( 71,251)
( 72,252)( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,277)
( 80,278)( 81,279)( 82,280)( 83,281)( 84,282)( 85,271)( 86,272)( 87,273)
( 88,274)( 89,275)( 90,276)( 91,265)( 92,266)( 93,267)( 94,268)( 95,269)
( 96,270)( 97,289)( 98,290)( 99,291)(100,292)(101,293)(102,294)(103,295)
(104,296)(105,297)(106,298)(107,299)(108,300)(109,304)(110,305)(111,306)
(112,301)(113,302)(114,303)(115,310)(116,311)(117,312)(118,307)(119,308)
(120,309)(121,319)(122,320)(123,321)(124,322)(125,323)(126,324)(127,313)
(128,314)(129,315)(130,316)(131,317)(132,318)(133,334)(134,335)(135,336)
(136,331)(137,332)(138,333)(139,328)(140,329)(141,330)(142,325)(143,326)
(144,327)(145,349)(146,350)(147,351)(148,352)(149,353)(150,354)(151,355)
(152,356)(153,357)(154,358)(155,359)(156,360)(157,337)(158,338)(159,339)
(160,340)(161,341)(162,342)(163,343)(164,344)(165,345)(166,346)(167,347)
(168,348)(169,379)(170,380)(171,381)(172,382)(173,383)(174,384)(175,373)
(176,374)(177,375)(178,376)(179,377)(180,378)(181,367)(182,368)(183,369)
(184,370)(185,371)(186,372)(187,361)(188,362)(189,363)(190,364)(191,365)
(192,366);
s1 := Sym(384)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 13, 16)( 14, 18)( 15, 17)
( 19, 22)( 20, 24)( 21, 23)( 25, 31)( 26, 33)( 27, 32)( 28, 34)( 29, 36)
( 30, 35)( 37, 46)( 38, 48)( 39, 47)( 40, 43)( 41, 45)( 42, 44)( 49, 61)
( 50, 63)( 51, 62)( 52, 64)( 53, 66)( 54, 65)( 55, 67)( 56, 69)( 57, 68)
( 58, 70)( 59, 72)( 60, 71)( 73, 91)( 74, 93)( 75, 92)( 76, 94)( 77, 96)
( 78, 95)( 79, 85)( 80, 87)( 81, 86)( 82, 88)( 83, 90)( 84, 89)( 97,121)
( 98,123)( 99,122)(100,124)(101,126)(102,125)(103,127)(104,129)(105,128)
(106,130)(107,132)(108,131)(109,136)(110,138)(111,137)(112,133)(113,135)
(114,134)(115,142)(116,144)(117,143)(118,139)(119,141)(120,140)(145,181)
(146,183)(147,182)(148,184)(149,186)(150,185)(151,187)(152,189)(153,188)
(154,190)(155,192)(156,191)(157,169)(158,171)(159,170)(160,172)(161,174)
(162,173)(163,175)(164,177)(165,176)(166,178)(167,180)(168,179)(193,241)
(194,243)(195,242)(196,244)(197,246)(198,245)(199,247)(200,249)(201,248)
(202,250)(203,252)(204,251)(205,256)(206,258)(207,257)(208,253)(209,255)
(210,254)(211,262)(212,264)(213,263)(214,259)(215,261)(216,260)(217,271)
(218,273)(219,272)(220,274)(221,276)(222,275)(223,265)(224,267)(225,266)
(226,268)(227,270)(228,269)(229,286)(230,288)(231,287)(232,283)(233,285)
(234,284)(235,280)(236,282)(237,281)(238,277)(239,279)(240,278)(289,367)
(290,369)(291,368)(292,370)(293,372)(294,371)(295,361)(296,363)(297,362)
(298,364)(299,366)(300,365)(301,382)(302,384)(303,383)(304,379)(305,381)
(306,380)(307,376)(308,378)(309,377)(310,373)(311,375)(312,374)(313,343)
(314,345)(315,344)(316,346)(317,348)(318,347)(319,337)(320,339)(321,338)
(322,340)(323,342)(324,341)(325,358)(326,360)(327,359)(328,355)(329,357)
(330,356)(331,352)(332,354)(333,353)(334,349)(335,351)(336,350);
s2 := Sym(384)!(  1, 99)(  2, 98)(  3, 97)(  4,102)(  5,101)(  6,100)(  7,105)
(  8,104)(  9,103)( 10,108)( 11,107)( 12,106)( 13,111)( 14,110)( 15,109)
( 16,114)( 17,113)( 18,112)( 19,117)( 20,116)( 21,115)( 22,120)( 23,119)
( 24,118)( 25,129)( 26,128)( 27,127)( 28,132)( 29,131)( 30,130)( 31,123)
( 32,122)( 33,121)( 34,126)( 35,125)( 36,124)( 37,141)( 38,140)( 39,139)
( 40,144)( 41,143)( 42,142)( 43,135)( 44,134)( 45,133)( 46,138)( 47,137)
( 48,136)( 49,153)( 50,152)( 51,151)( 52,156)( 53,155)( 54,154)( 55,147)
( 56,146)( 57,145)( 58,150)( 59,149)( 60,148)( 61,165)( 62,164)( 63,163)
( 64,168)( 65,167)( 66,166)( 67,159)( 68,158)( 69,157)( 70,162)( 71,161)
( 72,160)( 73,171)( 74,170)( 75,169)( 76,174)( 77,173)( 78,172)( 79,177)
( 80,176)( 81,175)( 82,180)( 83,179)( 84,178)( 85,183)( 86,182)( 87,181)
( 88,186)( 89,185)( 90,184)( 91,189)( 92,188)( 93,187)( 94,192)( 95,191)
( 96,190)(193,291)(194,290)(195,289)(196,294)(197,293)(198,292)(199,297)
(200,296)(201,295)(202,300)(203,299)(204,298)(205,303)(206,302)(207,301)
(208,306)(209,305)(210,304)(211,309)(212,308)(213,307)(214,312)(215,311)
(216,310)(217,321)(218,320)(219,319)(220,324)(221,323)(222,322)(223,315)
(224,314)(225,313)(226,318)(227,317)(228,316)(229,333)(230,332)(231,331)
(232,336)(233,335)(234,334)(235,327)(236,326)(237,325)(238,330)(239,329)
(240,328)(241,345)(242,344)(243,343)(244,348)(245,347)(246,346)(247,339)
(248,338)(249,337)(250,342)(251,341)(252,340)(253,357)(254,356)(255,355)
(256,360)(257,359)(258,358)(259,351)(260,350)(261,349)(262,354)(263,353)
(264,352)(265,363)(266,362)(267,361)(268,366)(269,365)(270,364)(271,369)
(272,368)(273,367)(274,372)(275,371)(276,370)(277,375)(278,374)(279,373)
(280,378)(281,377)(282,376)(283,381)(284,380)(285,379)(286,384)(287,383)
(288,382);
poly := sub<Sym(384)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s1*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```
References : None.
to this polytope