Questions?
See the FAQ
or other info.

Polytope of Type {10,20,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,20,2}*800a
if this polytope has a name.
Group : SmallGroup(800,1127)
Rank : 4
Schlafli Type : {10,20,2}
Number of vertices, edges, etc : 10, 100, 20, 2
Order of s0s1s2s3 : 20
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {10,20,2,2} of size 1600
Vertex Figure Of :
   {2,10,20,2} of size 1600
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,10,2}*400a
   5-fold quotients : {2,20,2}*160, {10,4,2}*160
   10-fold quotients : {2,10,2}*80, {10,2,2}*80
   20-fold quotients : {2,5,2}*40, {5,2,2}*40
   25-fold quotients : {2,4,2}*32
   50-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {10,20,4}*1600a, {10,40,2}*1600a, {20,20,2}*1600a
Permutation Representation (GAP) :
s0 := (  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)( 18, 19)
( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)( 38, 39)
( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)( 58, 59)
( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)( 78, 79)
( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)( 98, 99);;
s1 := (  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)( 11, 17)
( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)( 32, 46)
( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)( 40, 43)
( 51, 77)( 52, 76)( 53, 80)( 54, 79)( 55, 78)( 56, 97)( 57, 96)( 58,100)
( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)( 66, 87)
( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)( 74, 84)
( 75, 83);;
s2 := (  1, 56)(  2, 57)(  3, 58)(  4, 59)(  5, 60)(  6, 51)(  7, 52)(  8, 53)
(  9, 54)( 10, 55)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)( 16, 66)
( 17, 67)( 18, 68)( 19, 69)( 20, 70)( 21, 61)( 22, 62)( 23, 63)( 24, 64)
( 25, 65)( 26, 81)( 27, 82)( 28, 83)( 29, 84)( 30, 85)( 31, 76)( 32, 77)
( 33, 78)( 34, 79)( 35, 80)( 36, 96)( 37, 97)( 38, 98)( 39, 99)( 40,100)
( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 86)( 47, 87)( 48, 88)
( 49, 89)( 50, 90);;
s3 := (101,102);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(102)!(  2,  5)(  3,  4)(  7, 10)(  8,  9)( 12, 15)( 13, 14)( 17, 20)
( 18, 19)( 22, 25)( 23, 24)( 27, 30)( 28, 29)( 32, 35)( 33, 34)( 37, 40)
( 38, 39)( 42, 45)( 43, 44)( 47, 50)( 48, 49)( 52, 55)( 53, 54)( 57, 60)
( 58, 59)( 62, 65)( 63, 64)( 67, 70)( 68, 69)( 72, 75)( 73, 74)( 77, 80)
( 78, 79)( 82, 85)( 83, 84)( 87, 90)( 88, 89)( 92, 95)( 93, 94)( 97,100)
( 98, 99);
s1 := Sym(102)!(  1,  2)(  3,  5)(  6, 22)(  7, 21)(  8, 25)(  9, 24)( 10, 23)
( 11, 17)( 12, 16)( 13, 20)( 14, 19)( 15, 18)( 26, 27)( 28, 30)( 31, 47)
( 32, 46)( 33, 50)( 34, 49)( 35, 48)( 36, 42)( 37, 41)( 38, 45)( 39, 44)
( 40, 43)( 51, 77)( 52, 76)( 53, 80)( 54, 79)( 55, 78)( 56, 97)( 57, 96)
( 58,100)( 59, 99)( 60, 98)( 61, 92)( 62, 91)( 63, 95)( 64, 94)( 65, 93)
( 66, 87)( 67, 86)( 68, 90)( 69, 89)( 70, 88)( 71, 82)( 72, 81)( 73, 85)
( 74, 84)( 75, 83);
s2 := Sym(102)!(  1, 56)(  2, 57)(  3, 58)(  4, 59)(  5, 60)(  6, 51)(  7, 52)
(  8, 53)(  9, 54)( 10, 55)( 11, 71)( 12, 72)( 13, 73)( 14, 74)( 15, 75)
( 16, 66)( 17, 67)( 18, 68)( 19, 69)( 20, 70)( 21, 61)( 22, 62)( 23, 63)
( 24, 64)( 25, 65)( 26, 81)( 27, 82)( 28, 83)( 29, 84)( 30, 85)( 31, 76)
( 32, 77)( 33, 78)( 34, 79)( 35, 80)( 36, 96)( 37, 97)( 38, 98)( 39, 99)
( 40,100)( 41, 91)( 42, 92)( 43, 93)( 44, 94)( 45, 95)( 46, 86)( 47, 87)
( 48, 88)( 49, 89)( 50, 90);
s3 := Sym(102)!(101,102);
poly := sub<Sym(102)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope