Questions?
See the FAQ
or other info.

Polytope of Type {8,26,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,26,2}*832
if this polytope has a name.
Group : SmallGroup(832,1425)
Rank : 4
Schlafli Type : {8,26,2}
Number of vertices, edges, etc : 8, 104, 26, 2
Order of s0s1s2s3 : 104
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {8,26,2,2} of size 1664
Vertex Figure Of :
   {2,8,26,2} of size 1664
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {4,26,2}*416
   4-fold quotients : {2,26,2}*208
   8-fold quotients : {2,13,2}*104
   13-fold quotients : {8,2,2}*64
   26-fold quotients : {4,2,2}*32
   52-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {8,52,2}*1664a, {8,26,4}*1664, {16,26,2}*1664
Permutation Representation (GAP) :
s0 := ( 27, 40)( 28, 41)( 29, 42)( 30, 43)( 31, 44)( 32, 45)( 33, 46)( 34, 47)
( 35, 48)( 36, 49)( 37, 50)( 38, 51)( 39, 52)( 53, 79)( 54, 80)( 55, 81)
( 56, 82)( 57, 83)( 58, 84)( 59, 85)( 60, 86)( 61, 87)( 62, 88)( 63, 89)
( 64, 90)( 65, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)( 71, 97)
( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);;
s1 := (  1, 53)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 61)(  7, 60)(  8, 59)
(  9, 58)( 10, 57)( 11, 56)( 12, 55)( 13, 54)( 14, 66)( 15, 78)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 71)( 23, 70)( 24, 69)
( 25, 68)( 26, 67)( 27, 92)( 28,104)( 29,103)( 30,102)( 31,101)( 32,100)
( 33, 99)( 34, 98)( 35, 97)( 36, 96)( 37, 95)( 38, 94)( 39, 93)( 40, 79)
( 41, 91)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 86)( 47, 85)( 48, 84)
( 49, 83)( 50, 82)( 51, 81)( 52, 80);;
s2 := (  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)( 31, 37)
( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)
( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)( 68, 78)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)( 98,100);;
s3 := (105,106);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(106)!( 27, 40)( 28, 41)( 29, 42)( 30, 43)( 31, 44)( 32, 45)( 33, 46)
( 34, 47)( 35, 48)( 36, 49)( 37, 50)( 38, 51)( 39, 52)( 53, 79)( 54, 80)
( 55, 81)( 56, 82)( 57, 83)( 58, 84)( 59, 85)( 60, 86)( 61, 87)( 62, 88)
( 63, 89)( 64, 90)( 65, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)
( 71, 97)( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);
s1 := Sym(106)!(  1, 53)(  2, 65)(  3, 64)(  4, 63)(  5, 62)(  6, 61)(  7, 60)
(  8, 59)(  9, 58)( 10, 57)( 11, 56)( 12, 55)( 13, 54)( 14, 66)( 15, 78)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 71)( 23, 70)
( 24, 69)( 25, 68)( 26, 67)( 27, 92)( 28,104)( 29,103)( 30,102)( 31,101)
( 32,100)( 33, 99)( 34, 98)( 35, 97)( 36, 96)( 37, 95)( 38, 94)( 39, 93)
( 40, 79)( 41, 91)( 42, 90)( 43, 89)( 44, 88)( 45, 87)( 46, 86)( 47, 85)
( 48, 84)( 49, 83)( 50, 82)( 51, 81)( 52, 80);
s2 := Sym(106)!(  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)
( 46, 48)( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)
( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)
( 98,100);
s3 := Sym(106)!(105,106);
poly := sub<Sym(106)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope