Questions?
See the FAQ
or other info.

Polytope of Type {70,2,3}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {70,2,3}*840
if this polytope has a name.
Group : SmallGroup(840,174)
Rank : 4
Schlafli Type : {70,2,3}
Number of vertices, edges, etc : 70, 70, 3, 3
Order of s0s1s2s3 : 210
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {70,2,3,2} of size 1680
Vertex Figure Of :
   {2,70,2,3} of size 1680
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {35,2,3}*420
   5-fold quotients : {14,2,3}*168
   7-fold quotients : {10,2,3}*120
   10-fold quotients : {7,2,3}*84
   14-fold quotients : {5,2,3}*60
   35-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {140,2,3}*1680, {70,2,6}*1680
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 8,29)( 9,35)(10,34)(11,33)(12,32)(13,31)(14,30)
(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(37,42)(38,41)(39,40)(43,64)
(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,57)(51,63)(52,62)(53,61)(54,60)
(55,59)(56,58);;
s1 := ( 1,44)( 2,43)( 3,49)( 4,48)( 5,47)( 6,46)( 7,45)( 8,37)( 9,36)(10,42)
(11,41)(12,40)(13,39)(14,38)(15,65)(16,64)(17,70)(18,69)(19,68)(20,67)(21,66)
(22,58)(23,57)(24,63)(25,62)(26,61)(27,60)(28,59)(29,51)(30,50)(31,56)(32,55)
(33,54)(34,53)(35,52);;
s2 := (72,73);;
s3 := (71,72);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(73)!( 2, 7)( 3, 6)( 4, 5)( 8,29)( 9,35)(10,34)(11,33)(12,32)(13,31)
(14,30)(15,22)(16,28)(17,27)(18,26)(19,25)(20,24)(21,23)(37,42)(38,41)(39,40)
(43,64)(44,70)(45,69)(46,68)(47,67)(48,66)(49,65)(50,57)(51,63)(52,62)(53,61)
(54,60)(55,59)(56,58);
s1 := Sym(73)!( 1,44)( 2,43)( 3,49)( 4,48)( 5,47)( 6,46)( 7,45)( 8,37)( 9,36)
(10,42)(11,41)(12,40)(13,39)(14,38)(15,65)(16,64)(17,70)(18,69)(19,68)(20,67)
(21,66)(22,58)(23,57)(24,63)(25,62)(26,61)(27,60)(28,59)(29,51)(30,50)(31,56)
(32,55)(33,54)(34,53)(35,52);
s2 := Sym(73)!(72,73);
s3 := Sym(73)!(71,72);
poly := sub<Sym(73)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope