Questions?
See the FAQ
or other info.

Polytope of Type {2,36,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,36,6}*864c
if this polytope has a name.
Group : SmallGroup(864,3998)
Rank : 4
Schlafli Type : {2,36,6}
Number of vertices, edges, etc : 2, 36, 108, 6
Order of s0s1s2s3 : 18
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,36,6,2} of size 1728
Vertex Figure Of :
   {2,2,36,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,12,6}*288d
   9-fold quotients : {2,4,6}*96b
   18-fold quotients : {2,4,3}*48
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,36,6}*1728
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7,13)( 8,14)( 9,11)(10,12)(15,33)(16,34)(17,31)(18,32)
(19,29)(20,30)(21,27)(22,28)(23,37)(24,38)(25,35)(26,36);;
s2 := ( 3,15)( 4,17)( 5,16)( 6,18)( 7,23)( 8,25)( 9,24)(10,26)(11,19)(12,21)
(13,20)(14,22)(27,31)(28,33)(29,32)(30,34)(36,37);;
s3 := ( 4, 6)( 8,10)(12,14)(16,18)(20,22)(24,26)(28,30)(32,34)(36,38);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!( 3, 5)( 4, 6)( 7,13)( 8,14)( 9,11)(10,12)(15,33)(16,34)(17,31)
(18,32)(19,29)(20,30)(21,27)(22,28)(23,37)(24,38)(25,35)(26,36);
s2 := Sym(38)!( 3,15)( 4,17)( 5,16)( 6,18)( 7,23)( 8,25)( 9,24)(10,26)(11,19)
(12,21)(13,20)(14,22)(27,31)(28,33)(29,32)(30,34)(36,37);
s3 := Sym(38)!( 4, 6)( 8,10)(12,14)(16,18)(20,22)(24,26)(28,30)(32,34)(36,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s1*s2*s3*s2*s3*s1*s2, 
s1*s2*s3*s2*s1*s2*s1*s2*s1*s2*s3*s2*s1*s2*s1*s2, 
s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s3 >; 
 

to this polytope