Questions?
See the FAQ
or other info.

Polytope of Type {2,3,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,6}*864
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 4
Schlafli Type : {2,3,6}
Number of vertices, edges, etc : 2, 36, 108, 72
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,3,6,2} of size 1728
Vertex Figure Of :
   {2,2,3,6} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {2,3,6}*288
   4-fold quotients : {2,3,6}*216
   9-fold quotients : {2,3,6}*96
   12-fold quotients : {2,3,6}*72
   18-fold quotients : {2,3,3}*48
   36-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,3,12}*1728, {2,6,6}*1728a
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 8, 9)(12,13)(15,27)(16,29)(17,28)(18,30)(19,31)(20,33)(21,32)
(22,34)(23,35)(24,37)(25,36)(26,38);;
s2 := ( 3,19)( 4,22)( 5,21)( 6,20)( 7,23)( 8,26)( 9,25)(10,24)(11,15)(12,18)
(13,17)(14,16)(28,30)(32,34)(36,38);;
s3 := ( 3, 6)( 7,14)( 8,12)( 9,13)(10,11)(15,18)(19,26)(20,24)(21,25)(22,23)
(27,30)(31,38)(32,36)(33,37)(34,35);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!( 4, 5)( 8, 9)(12,13)(15,27)(16,29)(17,28)(18,30)(19,31)(20,33)
(21,32)(22,34)(23,35)(24,37)(25,36)(26,38);
s2 := Sym(38)!( 3,19)( 4,22)( 5,21)( 6,20)( 7,23)( 8,26)( 9,25)(10,24)(11,15)
(12,18)(13,17)(14,16)(28,30)(32,34)(36,38);
s3 := Sym(38)!( 3, 6)( 7,14)( 8,12)( 9,13)(10,11)(15,18)(19,26)(20,24)(21,25)
(22,23)(27,30)(31,38)(32,36)(33,37)(34,35);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2 >; 
 

to this polytope