Questions?
See the FAQ
or other info.

Polytope of Type {3,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,2}*864
if this polytope has a name.
Group : SmallGroup(864,4000)
Rank : 4
Schlafli Type : {3,6,2}
Number of vertices, edges, etc : 36, 108, 72, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {3,6,2,2} of size 1728
Vertex Figure Of :
   {2,3,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,6,2}*288
   4-fold quotients : {3,6,2}*216
   9-fold quotients : {3,6,2}*96
   12-fold quotients : {3,6,2}*72
   18-fold quotients : {3,3,2}*48
   36-fold quotients : {3,2,2}*24
Covers (Minimal Covers in Boldface) :
   2-fold covers : {3,12,2}*1728, {3,6,4}*1728a, {6,6,2}*1728a
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(13,25)(14,27)(15,26)(16,28)(17,29)(18,31)(19,30)
(20,32)(21,33)(22,35)(23,34)(24,36);;
s1 := ( 1,17)( 2,20)( 3,19)( 4,18)( 5,21)( 6,24)( 7,23)( 8,22)( 9,13)(10,16)
(11,15)(12,14)(26,28)(30,32)(34,36);;
s2 := ( 1, 4)( 5,12)( 6,10)( 7,11)( 8, 9)(13,16)(17,24)(18,22)(19,23)(20,21)
(25,28)(29,36)(30,34)(31,35)(32,33);;
s3 := (37,38);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!( 2, 3)( 6, 7)(10,11)(13,25)(14,27)(15,26)(16,28)(17,29)(18,31)
(19,30)(20,32)(21,33)(22,35)(23,34)(24,36);
s1 := Sym(38)!( 1,17)( 2,20)( 3,19)( 4,18)( 5,21)( 6,24)( 7,23)( 8,22)( 9,13)
(10,16)(11,15)(12,14)(26,28)(30,32)(34,36);
s2 := Sym(38)!( 1, 4)( 5,12)( 6,10)( 7,11)( 8, 9)(13,16)(17,24)(18,22)(19,23)
(20,21)(25,28)(29,36)(30,34)(31,35)(32,33);
s3 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope