Questions?
See the FAQ
or other info.

Polytope of Type {12,4,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,4,2}*864a
if this polytope has a name.
Group : SmallGroup(864,4007)
Rank : 4
Schlafli Type : {12,4,2}
Number of vertices, edges, etc : 54, 108, 18, 2
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {12,4,2,2} of size 1728
Vertex Figure Of :
   {2,12,4,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {12,4,2}*432
   3-fold quotients : {4,4,2}*288
   6-fold quotients : {4,4,2}*144
   54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,4,4}*1728a, {12,4,2}*1728a
Permutation Representation (GAP) :
s0 := ( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)(16,25)
(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)(42,50)
(43,52)(44,54)(45,53);;
s1 := ( 1, 2)( 4,20)( 5,19)( 6,21)( 7,11)( 8,10)( 9,12)(13,27)(14,26)(15,25)
(17,18)(23,24)(28,29)(31,47)(32,46)(33,48)(34,38)(35,37)(36,39)(40,54)(41,53)
(42,52)(44,45)(50,51);;
s2 := ( 1,31)( 2,33)( 3,32)( 4,28)( 5,30)( 6,29)( 7,34)( 8,36)( 9,35)(10,40)
(11,42)(12,41)(13,37)(14,39)(15,38)(16,43)(17,45)(18,44)(19,49)(20,51)(21,50)
(22,46)(23,48)(24,47)(25,52)(26,54)(27,53);;
s3 := (55,56);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(56)!( 2, 3)( 5, 6)( 8, 9)(10,19)(11,21)(12,20)(13,22)(14,24)(15,23)
(16,25)(17,27)(18,26)(29,30)(32,33)(35,36)(37,46)(38,48)(39,47)(40,49)(41,51)
(42,50)(43,52)(44,54)(45,53);
s1 := Sym(56)!( 1, 2)( 4,20)( 5,19)( 6,21)( 7,11)( 8,10)( 9,12)(13,27)(14,26)
(15,25)(17,18)(23,24)(28,29)(31,47)(32,46)(33,48)(34,38)(35,37)(36,39)(40,54)
(41,53)(42,52)(44,45)(50,51);
s2 := Sym(56)!( 1,31)( 2,33)( 3,32)( 4,28)( 5,30)( 6,29)( 7,34)( 8,36)( 9,35)
(10,40)(11,42)(12,41)(13,37)(14,39)(15,38)(16,43)(17,45)(18,44)(19,49)(20,51)
(21,50)(22,46)(23,48)(24,47)(25,52)(26,54)(27,53);
s3 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1 >; 
 

to this polytope