Questions?
See the FAQ
or other info.

Polytope of Type {6,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,12}*864d
if this polytope has a name.
Group : SmallGroup(864,4368)
Rank : 4
Schlafli Type : {6,6,12}
Number of vertices, edges, etc : 6, 18, 36, 12
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,6,12,2} of size 1728
Vertex Figure Of :
   {2,6,6,12} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,6}*432d
   3-fold quotients : {2,6,12}*288a, {6,6,4}*288b
   6-fold quotients : {2,6,6}*144a, {6,6,2}*144b
   9-fold quotients : {2,2,12}*96, {2,6,4}*96a
   12-fold quotients : {6,3,2}*72
   18-fold quotients : {2,2,6}*48, {2,6,2}*48
   27-fold quotients : {2,2,4}*32
   36-fold quotients : {2,2,3}*24, {2,3,2}*24
   54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {6,6,24}*1728d, {12,6,12}*1728c, {6,12,12}*1728d
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)( 47, 48)
( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)( 71, 72)
( 74, 75)( 77, 78)( 80, 81)( 83, 84)( 86, 87)( 89, 90)( 92, 93)( 95, 96)
( 98, 99)(101,102)(104,105)(107,108);;
s1 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)( 15, 18)
( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)( 33, 36)
( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)( 51, 54)
( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 65)( 67, 71)( 68, 70)( 69, 72)
( 73, 74)( 76, 80)( 77, 79)( 78, 81)( 82, 83)( 85, 89)( 86, 88)( 87, 90)
( 91, 92)( 94, 98)( 95, 97)( 96, 99)(100,101)(103,107)(104,106)(105,108);;
s2 := (  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 22)( 11, 24)( 12, 23)( 13, 19)
( 14, 21)( 15, 20)( 16, 25)( 17, 27)( 18, 26)( 28, 31)( 29, 33)( 30, 32)
( 35, 36)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)( 43, 52)
( 44, 54)( 45, 53)( 55, 85)( 56, 87)( 57, 86)( 58, 82)( 59, 84)( 60, 83)
( 61, 88)( 62, 90)( 63, 89)( 64,103)( 65,105)( 66,104)( 67,100)( 68,102)
( 69,101)( 70,106)( 71,108)( 72,107)( 73, 94)( 74, 96)( 75, 95)( 76, 91)
( 77, 93)( 78, 92)( 79, 97)( 80, 99)( 81, 98);;
s3 := (  1, 64)(  2, 65)(  3, 66)(  4, 67)(  5, 68)(  6, 69)(  7, 70)(  8, 71)
(  9, 72)( 10, 55)( 11, 56)( 12, 57)( 13, 58)( 14, 59)( 15, 60)( 16, 61)
( 17, 62)( 18, 63)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)( 24, 78)
( 25, 79)( 26, 80)( 27, 81)( 28, 91)( 29, 92)( 30, 93)( 31, 94)( 32, 95)
( 33, 96)( 34, 97)( 35, 98)( 36, 99)( 37, 82)( 38, 83)( 39, 84)( 40, 85)
( 41, 86)( 42, 87)( 43, 88)( 44, 89)( 45, 90)( 46,100)( 47,101)( 48,102)
( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)
( 47, 48)( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)
( 71, 72)( 74, 75)( 77, 78)( 80, 81)( 83, 84)( 86, 87)( 89, 90)( 92, 93)
( 95, 96)( 98, 99)(101,102)(104,105)(107,108);
s1 := Sym(108)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 11)( 13, 17)( 14, 16)
( 15, 18)( 19, 20)( 22, 26)( 23, 25)( 24, 27)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 38)( 40, 44)( 41, 43)( 42, 45)( 46, 47)( 49, 53)( 50, 52)
( 51, 54)( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 65)( 67, 71)( 68, 70)
( 69, 72)( 73, 74)( 76, 80)( 77, 79)( 78, 81)( 82, 83)( 85, 89)( 86, 88)
( 87, 90)( 91, 92)( 94, 98)( 95, 97)( 96, 99)(100,101)(103,107)(104,106)
(105,108);
s2 := Sym(108)!(  1,  4)(  2,  6)(  3,  5)(  8,  9)( 10, 22)( 11, 24)( 12, 23)
( 13, 19)( 14, 21)( 15, 20)( 16, 25)( 17, 27)( 18, 26)( 28, 31)( 29, 33)
( 30, 32)( 35, 36)( 37, 49)( 38, 51)( 39, 50)( 40, 46)( 41, 48)( 42, 47)
( 43, 52)( 44, 54)( 45, 53)( 55, 85)( 56, 87)( 57, 86)( 58, 82)( 59, 84)
( 60, 83)( 61, 88)( 62, 90)( 63, 89)( 64,103)( 65,105)( 66,104)( 67,100)
( 68,102)( 69,101)( 70,106)( 71,108)( 72,107)( 73, 94)( 74, 96)( 75, 95)
( 76, 91)( 77, 93)( 78, 92)( 79, 97)( 80, 99)( 81, 98);
s3 := Sym(108)!(  1, 64)(  2, 65)(  3, 66)(  4, 67)(  5, 68)(  6, 69)(  7, 70)
(  8, 71)(  9, 72)( 10, 55)( 11, 56)( 12, 57)( 13, 58)( 14, 59)( 15, 60)
( 16, 61)( 17, 62)( 18, 63)( 19, 73)( 20, 74)( 21, 75)( 22, 76)( 23, 77)
( 24, 78)( 25, 79)( 26, 80)( 27, 81)( 28, 91)( 29, 92)( 30, 93)( 31, 94)
( 32, 95)( 33, 96)( 34, 97)( 35, 98)( 36, 99)( 37, 82)( 38, 83)( 39, 84)
( 40, 85)( 41, 86)( 42, 87)( 43, 88)( 44, 89)( 45, 90)( 46,100)( 47,101)
( 48,102)( 49,103)( 50,104)( 51,105)( 52,106)( 53,107)( 54,108);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope