Questions?
See the FAQ
or other info.

Polytope of Type {6,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,12}*864f
if this polytope has a name.
Group : SmallGroup(864,4406)
Rank : 4
Schlafli Type : {6,6,12}
Number of vertices, edges, etc : 6, 18, 36, 12
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {6,6,12,2} of size 1728
Vertex Figure Of :
   {2,6,6,12} of size 1728
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,6,6}*432e
   3-fold quotients : {6,6,4}*288a, {2,6,12}*288c
   6-fold quotients : {2,6,6}*144c, {6,6,2}*144a
   9-fold quotients : {2,6,4}*96a, {6,2,4}*96
   12-fold quotients : {2,3,6}*72
   18-fold quotients : {3,2,4}*48, {2,6,2}*48, {6,2,2}*48
   27-fold quotients : {2,2,4}*32
   36-fold quotients : {2,3,2}*24, {3,2,2}*24
   54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,6,12}*1728d, {6,12,12}*1728e, {6,6,24}*1728f
Permutation Representation (GAP) :
s0 := (  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)( 23, 24)
( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)( 47, 48)
( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)( 71, 72)
( 74, 75)( 77, 78)( 80, 81)( 83, 84)( 86, 87)( 89, 90)( 92, 93)( 95, 96)
( 98, 99)(101,102)(104,105)(107,108);;
s1 := (  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 20)( 11, 19)( 12, 21)( 13, 26)
( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 28, 29)( 31, 35)( 32, 34)
( 33, 36)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)( 43, 50)
( 44, 49)( 45, 51)( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 74)( 65, 73)
( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)( 82, 83)
( 85, 89)( 86, 88)( 87, 90)( 91,101)( 92,100)( 93,102)( 94,107)( 95,106)
( 96,108)( 97,104)( 98,103)( 99,105);;
s2 := (  1, 67)(  2, 68)(  3, 69)(  4, 64)(  5, 65)(  6, 66)(  7, 70)(  8, 71)
(  9, 72)( 10, 58)( 11, 59)( 12, 60)( 13, 55)( 14, 56)( 15, 57)( 16, 61)
( 17, 62)( 18, 63)( 19, 76)( 20, 77)( 21, 78)( 22, 73)( 23, 74)( 24, 75)
( 25, 79)( 26, 80)( 27, 81)( 28, 94)( 29, 95)( 30, 96)( 31, 91)( 32, 92)
( 33, 93)( 34, 97)( 35, 98)( 36, 99)( 37, 85)( 38, 86)( 39, 87)( 40, 82)
( 41, 83)( 42, 84)( 43, 88)( 44, 89)( 45, 90)( 46,103)( 47,104)( 48,105)
( 49,100)( 50,101)( 51,102)( 52,106)( 53,107)( 54,108);;
s3 := (  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)
( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)( 68, 98)
( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)( 76,106)
( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(108)!(  2,  3)(  5,  6)(  8,  9)( 11, 12)( 14, 15)( 17, 18)( 20, 21)
( 23, 24)( 26, 27)( 29, 30)( 32, 33)( 35, 36)( 38, 39)( 41, 42)( 44, 45)
( 47, 48)( 50, 51)( 53, 54)( 56, 57)( 59, 60)( 62, 63)( 65, 66)( 68, 69)
( 71, 72)( 74, 75)( 77, 78)( 80, 81)( 83, 84)( 86, 87)( 89, 90)( 92, 93)
( 95, 96)( 98, 99)(101,102)(104,105)(107,108);
s1 := Sym(108)!(  1,  2)(  4,  8)(  5,  7)(  6,  9)( 10, 20)( 11, 19)( 12, 21)
( 13, 26)( 14, 25)( 15, 27)( 16, 23)( 17, 22)( 18, 24)( 28, 29)( 31, 35)
( 32, 34)( 33, 36)( 37, 47)( 38, 46)( 39, 48)( 40, 53)( 41, 52)( 42, 54)
( 43, 50)( 44, 49)( 45, 51)( 55, 56)( 58, 62)( 59, 61)( 60, 63)( 64, 74)
( 65, 73)( 66, 75)( 67, 80)( 68, 79)( 69, 81)( 70, 77)( 71, 76)( 72, 78)
( 82, 83)( 85, 89)( 86, 88)( 87, 90)( 91,101)( 92,100)( 93,102)( 94,107)
( 95,106)( 96,108)( 97,104)( 98,103)( 99,105);
s2 := Sym(108)!(  1, 67)(  2, 68)(  3, 69)(  4, 64)(  5, 65)(  6, 66)(  7, 70)
(  8, 71)(  9, 72)( 10, 58)( 11, 59)( 12, 60)( 13, 55)( 14, 56)( 15, 57)
( 16, 61)( 17, 62)( 18, 63)( 19, 76)( 20, 77)( 21, 78)( 22, 73)( 23, 74)
( 24, 75)( 25, 79)( 26, 80)( 27, 81)( 28, 94)( 29, 95)( 30, 96)( 31, 91)
( 32, 92)( 33, 93)( 34, 97)( 35, 98)( 36, 99)( 37, 85)( 38, 86)( 39, 87)
( 40, 82)( 41, 83)( 42, 84)( 43, 88)( 44, 89)( 45, 90)( 46,103)( 47,104)
( 48,105)( 49,100)( 50,101)( 51,102)( 52,106)( 53,107)( 54,108);
s3 := Sym(108)!(  4,  7)(  5,  8)(  6,  9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)
( 60, 90)( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)
( 68, 98)( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)
( 76,106)( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);
poly := sub<Sym(108)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 
References : None.
to this polytope