Questions?
See the FAQ
or other info.

# Polytope of Type {6,12,4}

Atlas Canonical Name : {6,12,4}*864d
if this polytope has a name.
Group : SmallGroup(864,4669)
Rank : 4
Schlafli Type : {6,12,4}
Number of vertices, edges, etc : 9, 54, 36, 4
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{6,12,4,2} of size 1728
Vertex Figure Of :
{2,6,12,4} of size 1728
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {6,12,4}*1728r, {6,12,4}*1728s
Permutation Representation (GAP) :
```s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)(18,34)
(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,17)(14,19)(15,18)(16,20)(22,23)
(25,29)(26,31)(27,30)(28,32)(34,35);;
s2 := ( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)( 9,25)(10,28)(11,27)(12,26)(18,20)
(21,29)(22,32)(23,31)(24,30)(34,36);;
s3 := ( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)
(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3,
s3*s2*s1*s3*s2*s3*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(36)!( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)
(18,34)(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);
s1 := Sym(36)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,17)(14,19)(15,18)(16,20)
(22,23)(25,29)(26,31)(27,30)(28,32)(34,35);
s2 := Sym(36)!( 2, 4)( 5,13)( 6,16)( 7,15)( 8,14)( 9,25)(10,28)(11,27)(12,26)
(18,20)(21,29)(22,32)(23,31)(24,30)(34,36);
s3 := Sym(36)!( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)
(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)(33,36)(34,35);
poly := sub<Sym(36)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3*s2*s3, s3*s2*s1*s3*s2*s3*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >;

```
References : None.
to this polytope