Questions?
See the FAQ
or other info.

# Polytope of Type {12,6,2}

Atlas Canonical Name : {12,6,2}*864i
if this polytope has a name.
Group : SmallGroup(864,4701)
Rank : 4
Schlafli Type : {12,6,2}
Number of vertices, edges, etc : 36, 108, 18, 2
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{12,6,2,2} of size 1728
Vertex Figure Of :
{2,12,6,2} of size 1728
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,6,2}*432c
3-fold quotients : {4,6,2}*288
6-fold quotients : {4,6,2}*144
9-fold quotients : {12,2,2}*96
18-fold quotients : {6,2,2}*48
27-fold quotients : {4,2,2}*32
36-fold quotients : {3,2,2}*24
54-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
2-fold covers : {24,6,2}*1728h, {12,6,4}*1728n, {12,12,2}*1728k
Permutation Representation (GAP) :
```s0 := ( 2, 3)( 4,10)( 5,12)( 6,11)( 7,19)( 8,21)( 9,20)(14,15)(16,22)(17,24)
(18,23)(26,27)(29,30)(31,37)(32,39)(33,38)(34,46)(35,48)(36,47)(41,42)(43,49)
(44,51)(45,50)(53,54);;
s1 := ( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)(22,26)
(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)(46,47)
(49,53)(50,52)(51,54);;
s2 := ( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)(10,31)
(11,32)(12,33)(13,28)(14,29)(15,30)(16,34)(17,35)(18,36)(19,49)(20,50)(21,51)
(22,46)(23,47)(24,48)(25,52)(26,53)(27,54);;
s3 := (55,56);;
poly := Group([s0,s1,s2,s3]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(56)!( 2, 3)( 4,10)( 5,12)( 6,11)( 7,19)( 8,21)( 9,20)(14,15)(16,22)
(17,24)(18,23)(26,27)(29,30)(31,37)(32,39)(33,38)(34,46)(35,48)(36,47)(41,42)
(43,49)(44,51)(45,50)(53,54);
s1 := Sym(56)!( 1, 2)( 4, 8)( 5, 7)( 6, 9)(10,11)(13,17)(14,16)(15,18)(19,20)
(22,26)(23,25)(24,27)(28,29)(31,35)(32,34)(33,36)(37,38)(40,44)(41,43)(42,45)
(46,47)(49,53)(50,52)(51,54);
s2 := Sym(56)!( 1,40)( 2,41)( 3,42)( 4,37)( 5,38)( 6,39)( 7,43)( 8,44)( 9,45)
(10,31)(11,32)(12,33)(13,28)(14,29)(15,30)(16,34)(17,35)(18,36)(19,49)(20,50)
(21,51)(22,46)(23,47)(24,48)(25,52)(26,53)(27,54);
s3 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;

```

to this polytope