Questions?
See the FAQ
or other info.

Polytope of Type {434}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {434}*868
Also Known As : 434-gon, {434}. if this polytope has another name.
Group : SmallGroup(868,8)
Rank : 2
Schlafli Type : {434}
Number of vertices, edges, etc : 434, 434
Order of s0s1 : 434
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {434,2} of size 1736
Vertex Figure Of :
   {2,434} of size 1736
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {217}*434
   7-fold quotients : {62}*124
   14-fold quotients : {31}*62
   31-fold quotients : {14}*28
   62-fold quotients : {7}*14
   217-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {868}*1736
Permutation Representation (GAP) :
s0 := (  2, 31)(  3, 30)(  4, 29)(  5, 28)(  6, 27)(  7, 26)(  8, 25)(  9, 24)
( 10, 23)( 11, 22)( 12, 21)( 13, 20)( 14, 19)( 15, 18)( 16, 17)( 32,187)
( 33,217)( 34,216)( 35,215)( 36,214)( 37,213)( 38,212)( 39,211)( 40,210)
( 41,209)( 42,208)( 43,207)( 44,206)( 45,205)( 46,204)( 47,203)( 48,202)
( 49,201)( 50,200)( 51,199)( 52,198)( 53,197)( 54,196)( 55,195)( 56,194)
( 57,193)( 58,192)( 59,191)( 60,190)( 61,189)( 62,188)( 63,156)( 64,186)
( 65,185)( 66,184)( 67,183)( 68,182)( 69,181)( 70,180)( 71,179)( 72,178)
( 73,177)( 74,176)( 75,175)( 76,174)( 77,173)( 78,172)( 79,171)( 80,170)
( 81,169)( 82,168)( 83,167)( 84,166)( 85,165)( 86,164)( 87,163)( 88,162)
( 89,161)( 90,160)( 91,159)( 92,158)( 93,157)( 94,125)( 95,155)( 96,154)
( 97,153)( 98,152)( 99,151)(100,150)(101,149)(102,148)(103,147)(104,146)
(105,145)(106,144)(107,143)(108,142)(109,141)(110,140)(111,139)(112,138)
(113,137)(114,136)(115,135)(116,134)(117,133)(118,132)(119,131)(120,130)
(121,129)(122,128)(123,127)(124,126)(219,248)(220,247)(221,246)(222,245)
(223,244)(224,243)(225,242)(226,241)(227,240)(228,239)(229,238)(230,237)
(231,236)(232,235)(233,234)(249,404)(250,434)(251,433)(252,432)(253,431)
(254,430)(255,429)(256,428)(257,427)(258,426)(259,425)(260,424)(261,423)
(262,422)(263,421)(264,420)(265,419)(266,418)(267,417)(268,416)(269,415)
(270,414)(271,413)(272,412)(273,411)(274,410)(275,409)(276,408)(277,407)
(278,406)(279,405)(280,373)(281,403)(282,402)(283,401)(284,400)(285,399)
(286,398)(287,397)(288,396)(289,395)(290,394)(291,393)(292,392)(293,391)
(294,390)(295,389)(296,388)(297,387)(298,386)(299,385)(300,384)(301,383)
(302,382)(303,381)(304,380)(305,379)(306,378)(307,377)(308,376)(309,375)
(310,374)(311,342)(312,372)(313,371)(314,370)(315,369)(316,368)(317,367)
(318,366)(319,365)(320,364)(321,363)(322,362)(323,361)(324,360)(325,359)
(326,358)(327,357)(328,356)(329,355)(330,354)(331,353)(332,352)(333,351)
(334,350)(335,349)(336,348)(337,347)(338,346)(339,345)(340,344)(341,343);;
s1 := (  1,250)(  2,249)(  3,279)(  4,278)(  5,277)(  6,276)(  7,275)(  8,274)
(  9,273)( 10,272)( 11,271)( 12,270)( 13,269)( 14,268)( 15,267)( 16,266)
( 17,265)( 18,264)( 19,263)( 20,262)( 21,261)( 22,260)( 23,259)( 24,258)
( 25,257)( 26,256)( 27,255)( 28,254)( 29,253)( 30,252)( 31,251)( 32,219)
( 33,218)( 34,248)( 35,247)( 36,246)( 37,245)( 38,244)( 39,243)( 40,242)
( 41,241)( 42,240)( 43,239)( 44,238)( 45,237)( 46,236)( 47,235)( 48,234)
( 49,233)( 50,232)( 51,231)( 52,230)( 53,229)( 54,228)( 55,227)( 56,226)
( 57,225)( 58,224)( 59,223)( 60,222)( 61,221)( 62,220)( 63,405)( 64,404)
( 65,434)( 66,433)( 67,432)( 68,431)( 69,430)( 70,429)( 71,428)( 72,427)
( 73,426)( 74,425)( 75,424)( 76,423)( 77,422)( 78,421)( 79,420)( 80,419)
( 81,418)( 82,417)( 83,416)( 84,415)( 85,414)( 86,413)( 87,412)( 88,411)
( 89,410)( 90,409)( 91,408)( 92,407)( 93,406)( 94,374)( 95,373)( 96,403)
( 97,402)( 98,401)( 99,400)(100,399)(101,398)(102,397)(103,396)(104,395)
(105,394)(106,393)(107,392)(108,391)(109,390)(110,389)(111,388)(112,387)
(113,386)(114,385)(115,384)(116,383)(117,382)(118,381)(119,380)(120,379)
(121,378)(122,377)(123,376)(124,375)(125,343)(126,342)(127,372)(128,371)
(129,370)(130,369)(131,368)(132,367)(133,366)(134,365)(135,364)(136,363)
(137,362)(138,361)(139,360)(140,359)(141,358)(142,357)(143,356)(144,355)
(145,354)(146,353)(147,352)(148,351)(149,350)(150,349)(151,348)(152,347)
(153,346)(154,345)(155,344)(156,312)(157,311)(158,341)(159,340)(160,339)
(161,338)(162,337)(163,336)(164,335)(165,334)(166,333)(167,332)(168,331)
(169,330)(170,329)(171,328)(172,327)(173,326)(174,325)(175,324)(176,323)
(177,322)(178,321)(179,320)(180,319)(181,318)(182,317)(183,316)(184,315)
(185,314)(186,313)(187,281)(188,280)(189,310)(190,309)(191,308)(192,307)
(193,306)(194,305)(195,304)(196,303)(197,302)(198,301)(199,300)(200,299)
(201,298)(202,297)(203,296)(204,295)(205,294)(206,293)(207,292)(208,291)
(209,290)(210,289)(211,288)(212,287)(213,286)(214,285)(215,284)(216,283)
(217,282);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(434)!(  2, 31)(  3, 30)(  4, 29)(  5, 28)(  6, 27)(  7, 26)(  8, 25)
(  9, 24)( 10, 23)( 11, 22)( 12, 21)( 13, 20)( 14, 19)( 15, 18)( 16, 17)
( 32,187)( 33,217)( 34,216)( 35,215)( 36,214)( 37,213)( 38,212)( 39,211)
( 40,210)( 41,209)( 42,208)( 43,207)( 44,206)( 45,205)( 46,204)( 47,203)
( 48,202)( 49,201)( 50,200)( 51,199)( 52,198)( 53,197)( 54,196)( 55,195)
( 56,194)( 57,193)( 58,192)( 59,191)( 60,190)( 61,189)( 62,188)( 63,156)
( 64,186)( 65,185)( 66,184)( 67,183)( 68,182)( 69,181)( 70,180)( 71,179)
( 72,178)( 73,177)( 74,176)( 75,175)( 76,174)( 77,173)( 78,172)( 79,171)
( 80,170)( 81,169)( 82,168)( 83,167)( 84,166)( 85,165)( 86,164)( 87,163)
( 88,162)( 89,161)( 90,160)( 91,159)( 92,158)( 93,157)( 94,125)( 95,155)
( 96,154)( 97,153)( 98,152)( 99,151)(100,150)(101,149)(102,148)(103,147)
(104,146)(105,145)(106,144)(107,143)(108,142)(109,141)(110,140)(111,139)
(112,138)(113,137)(114,136)(115,135)(116,134)(117,133)(118,132)(119,131)
(120,130)(121,129)(122,128)(123,127)(124,126)(219,248)(220,247)(221,246)
(222,245)(223,244)(224,243)(225,242)(226,241)(227,240)(228,239)(229,238)
(230,237)(231,236)(232,235)(233,234)(249,404)(250,434)(251,433)(252,432)
(253,431)(254,430)(255,429)(256,428)(257,427)(258,426)(259,425)(260,424)
(261,423)(262,422)(263,421)(264,420)(265,419)(266,418)(267,417)(268,416)
(269,415)(270,414)(271,413)(272,412)(273,411)(274,410)(275,409)(276,408)
(277,407)(278,406)(279,405)(280,373)(281,403)(282,402)(283,401)(284,400)
(285,399)(286,398)(287,397)(288,396)(289,395)(290,394)(291,393)(292,392)
(293,391)(294,390)(295,389)(296,388)(297,387)(298,386)(299,385)(300,384)
(301,383)(302,382)(303,381)(304,380)(305,379)(306,378)(307,377)(308,376)
(309,375)(310,374)(311,342)(312,372)(313,371)(314,370)(315,369)(316,368)
(317,367)(318,366)(319,365)(320,364)(321,363)(322,362)(323,361)(324,360)
(325,359)(326,358)(327,357)(328,356)(329,355)(330,354)(331,353)(332,352)
(333,351)(334,350)(335,349)(336,348)(337,347)(338,346)(339,345)(340,344)
(341,343);
s1 := Sym(434)!(  1,250)(  2,249)(  3,279)(  4,278)(  5,277)(  6,276)(  7,275)
(  8,274)(  9,273)( 10,272)( 11,271)( 12,270)( 13,269)( 14,268)( 15,267)
( 16,266)( 17,265)( 18,264)( 19,263)( 20,262)( 21,261)( 22,260)( 23,259)
( 24,258)( 25,257)( 26,256)( 27,255)( 28,254)( 29,253)( 30,252)( 31,251)
( 32,219)( 33,218)( 34,248)( 35,247)( 36,246)( 37,245)( 38,244)( 39,243)
( 40,242)( 41,241)( 42,240)( 43,239)( 44,238)( 45,237)( 46,236)( 47,235)
( 48,234)( 49,233)( 50,232)( 51,231)( 52,230)( 53,229)( 54,228)( 55,227)
( 56,226)( 57,225)( 58,224)( 59,223)( 60,222)( 61,221)( 62,220)( 63,405)
( 64,404)( 65,434)( 66,433)( 67,432)( 68,431)( 69,430)( 70,429)( 71,428)
( 72,427)( 73,426)( 74,425)( 75,424)( 76,423)( 77,422)( 78,421)( 79,420)
( 80,419)( 81,418)( 82,417)( 83,416)( 84,415)( 85,414)( 86,413)( 87,412)
( 88,411)( 89,410)( 90,409)( 91,408)( 92,407)( 93,406)( 94,374)( 95,373)
( 96,403)( 97,402)( 98,401)( 99,400)(100,399)(101,398)(102,397)(103,396)
(104,395)(105,394)(106,393)(107,392)(108,391)(109,390)(110,389)(111,388)
(112,387)(113,386)(114,385)(115,384)(116,383)(117,382)(118,381)(119,380)
(120,379)(121,378)(122,377)(123,376)(124,375)(125,343)(126,342)(127,372)
(128,371)(129,370)(130,369)(131,368)(132,367)(133,366)(134,365)(135,364)
(136,363)(137,362)(138,361)(139,360)(140,359)(141,358)(142,357)(143,356)
(144,355)(145,354)(146,353)(147,352)(148,351)(149,350)(150,349)(151,348)
(152,347)(153,346)(154,345)(155,344)(156,312)(157,311)(158,341)(159,340)
(160,339)(161,338)(162,337)(163,336)(164,335)(165,334)(166,333)(167,332)
(168,331)(169,330)(170,329)(171,328)(172,327)(173,326)(174,325)(175,324)
(176,323)(177,322)(178,321)(179,320)(180,319)(181,318)(182,317)(183,316)
(184,315)(185,314)(186,313)(187,281)(188,280)(189,310)(190,309)(191,308)
(192,307)(193,306)(194,305)(195,304)(196,303)(197,302)(198,301)(199,300)
(200,299)(201,298)(202,297)(203,296)(204,295)(205,294)(206,293)(207,292)
(208,291)(209,290)(210,289)(211,288)(212,287)(213,286)(214,285)(215,284)
(216,283)(217,282);
poly := sub<Sym(434)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope