Questions?
See the FAQ
or other info.

Polytope of Type {438}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {438}*876
Also Known As : 438-gon, {438}. if this polytope has another name.
Group : SmallGroup(876,17)
Rank : 2
Schlafli Type : {438}
Number of vertices, edges, etc : 438, 438
Order of s0s1 : 438
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {438,2} of size 1752
Vertex Figure Of :
   {2,438} of size 1752
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {219}*438
   3-fold quotients : {146}*292
   6-fold quotients : {73}*146
   73-fold quotients : {6}*12
   146-fold quotients : {3}*6
   219-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {876}*1752
Permutation Representation (GAP) :
s0 := (  2, 73)(  3, 72)(  4, 71)(  5, 70)(  6, 69)(  7, 68)(  8, 67)(  9, 66)
( 10, 65)( 11, 64)( 12, 63)( 13, 62)( 14, 61)( 15, 60)( 16, 59)( 17, 58)
( 18, 57)( 19, 56)( 20, 55)( 21, 54)( 22, 53)( 23, 52)( 24, 51)( 25, 50)
( 26, 49)( 27, 48)( 28, 47)( 29, 46)( 30, 45)( 31, 44)( 32, 43)( 33, 42)
( 34, 41)( 35, 40)( 36, 39)( 37, 38)( 74,147)( 75,219)( 76,218)( 77,217)
( 78,216)( 79,215)( 80,214)( 81,213)( 82,212)( 83,211)( 84,210)( 85,209)
( 86,208)( 87,207)( 88,206)( 89,205)( 90,204)( 91,203)( 92,202)( 93,201)
( 94,200)( 95,199)( 96,198)( 97,197)( 98,196)( 99,195)(100,194)(101,193)
(102,192)(103,191)(104,190)(105,189)(106,188)(107,187)(108,186)(109,185)
(110,184)(111,183)(112,182)(113,181)(114,180)(115,179)(116,178)(117,177)
(118,176)(119,175)(120,174)(121,173)(122,172)(123,171)(124,170)(125,169)
(126,168)(127,167)(128,166)(129,165)(130,164)(131,163)(132,162)(133,161)
(134,160)(135,159)(136,158)(137,157)(138,156)(139,155)(140,154)(141,153)
(142,152)(143,151)(144,150)(145,149)(146,148)(221,292)(222,291)(223,290)
(224,289)(225,288)(226,287)(227,286)(228,285)(229,284)(230,283)(231,282)
(232,281)(233,280)(234,279)(235,278)(236,277)(237,276)(238,275)(239,274)
(240,273)(241,272)(242,271)(243,270)(244,269)(245,268)(246,267)(247,266)
(248,265)(249,264)(250,263)(251,262)(252,261)(253,260)(254,259)(255,258)
(256,257)(293,366)(294,438)(295,437)(296,436)(297,435)(298,434)(299,433)
(300,432)(301,431)(302,430)(303,429)(304,428)(305,427)(306,426)(307,425)
(308,424)(309,423)(310,422)(311,421)(312,420)(313,419)(314,418)(315,417)
(316,416)(317,415)(318,414)(319,413)(320,412)(321,411)(322,410)(323,409)
(324,408)(325,407)(326,406)(327,405)(328,404)(329,403)(330,402)(331,401)
(332,400)(333,399)(334,398)(335,397)(336,396)(337,395)(338,394)(339,393)
(340,392)(341,391)(342,390)(343,389)(344,388)(345,387)(346,386)(347,385)
(348,384)(349,383)(350,382)(351,381)(352,380)(353,379)(354,378)(355,377)
(356,376)(357,375)(358,374)(359,373)(360,372)(361,371)(362,370)(363,369)
(364,368)(365,367);;
s1 := (  1,294)(  2,293)(  3,365)(  4,364)(  5,363)(  6,362)(  7,361)(  8,360)
(  9,359)( 10,358)( 11,357)( 12,356)( 13,355)( 14,354)( 15,353)( 16,352)
( 17,351)( 18,350)( 19,349)( 20,348)( 21,347)( 22,346)( 23,345)( 24,344)
( 25,343)( 26,342)( 27,341)( 28,340)( 29,339)( 30,338)( 31,337)( 32,336)
( 33,335)( 34,334)( 35,333)( 36,332)( 37,331)( 38,330)( 39,329)( 40,328)
( 41,327)( 42,326)( 43,325)( 44,324)( 45,323)( 46,322)( 47,321)( 48,320)
( 49,319)( 50,318)( 51,317)( 52,316)( 53,315)( 54,314)( 55,313)( 56,312)
( 57,311)( 58,310)( 59,309)( 60,308)( 61,307)( 62,306)( 63,305)( 64,304)
( 65,303)( 66,302)( 67,301)( 68,300)( 69,299)( 70,298)( 71,297)( 72,296)
( 73,295)( 74,221)( 75,220)( 76,292)( 77,291)( 78,290)( 79,289)( 80,288)
( 81,287)( 82,286)( 83,285)( 84,284)( 85,283)( 86,282)( 87,281)( 88,280)
( 89,279)( 90,278)( 91,277)( 92,276)( 93,275)( 94,274)( 95,273)( 96,272)
( 97,271)( 98,270)( 99,269)(100,268)(101,267)(102,266)(103,265)(104,264)
(105,263)(106,262)(107,261)(108,260)(109,259)(110,258)(111,257)(112,256)
(113,255)(114,254)(115,253)(116,252)(117,251)(118,250)(119,249)(120,248)
(121,247)(122,246)(123,245)(124,244)(125,243)(126,242)(127,241)(128,240)
(129,239)(130,238)(131,237)(132,236)(133,235)(134,234)(135,233)(136,232)
(137,231)(138,230)(139,229)(140,228)(141,227)(142,226)(143,225)(144,224)
(145,223)(146,222)(147,367)(148,366)(149,438)(150,437)(151,436)(152,435)
(153,434)(154,433)(155,432)(156,431)(157,430)(158,429)(159,428)(160,427)
(161,426)(162,425)(163,424)(164,423)(165,422)(166,421)(167,420)(168,419)
(169,418)(170,417)(171,416)(172,415)(173,414)(174,413)(175,412)(176,411)
(177,410)(178,409)(179,408)(180,407)(181,406)(182,405)(183,404)(184,403)
(185,402)(186,401)(187,400)(188,399)(189,398)(190,397)(191,396)(192,395)
(193,394)(194,393)(195,392)(196,391)(197,390)(198,389)(199,388)(200,387)
(201,386)(202,385)(203,384)(204,383)(205,382)(206,381)(207,380)(208,379)
(209,378)(210,377)(211,376)(212,375)(213,374)(214,373)(215,372)(216,371)
(217,370)(218,369)(219,368);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(438)!(  2, 73)(  3, 72)(  4, 71)(  5, 70)(  6, 69)(  7, 68)(  8, 67)
(  9, 66)( 10, 65)( 11, 64)( 12, 63)( 13, 62)( 14, 61)( 15, 60)( 16, 59)
( 17, 58)( 18, 57)( 19, 56)( 20, 55)( 21, 54)( 22, 53)( 23, 52)( 24, 51)
( 25, 50)( 26, 49)( 27, 48)( 28, 47)( 29, 46)( 30, 45)( 31, 44)( 32, 43)
( 33, 42)( 34, 41)( 35, 40)( 36, 39)( 37, 38)( 74,147)( 75,219)( 76,218)
( 77,217)( 78,216)( 79,215)( 80,214)( 81,213)( 82,212)( 83,211)( 84,210)
( 85,209)( 86,208)( 87,207)( 88,206)( 89,205)( 90,204)( 91,203)( 92,202)
( 93,201)( 94,200)( 95,199)( 96,198)( 97,197)( 98,196)( 99,195)(100,194)
(101,193)(102,192)(103,191)(104,190)(105,189)(106,188)(107,187)(108,186)
(109,185)(110,184)(111,183)(112,182)(113,181)(114,180)(115,179)(116,178)
(117,177)(118,176)(119,175)(120,174)(121,173)(122,172)(123,171)(124,170)
(125,169)(126,168)(127,167)(128,166)(129,165)(130,164)(131,163)(132,162)
(133,161)(134,160)(135,159)(136,158)(137,157)(138,156)(139,155)(140,154)
(141,153)(142,152)(143,151)(144,150)(145,149)(146,148)(221,292)(222,291)
(223,290)(224,289)(225,288)(226,287)(227,286)(228,285)(229,284)(230,283)
(231,282)(232,281)(233,280)(234,279)(235,278)(236,277)(237,276)(238,275)
(239,274)(240,273)(241,272)(242,271)(243,270)(244,269)(245,268)(246,267)
(247,266)(248,265)(249,264)(250,263)(251,262)(252,261)(253,260)(254,259)
(255,258)(256,257)(293,366)(294,438)(295,437)(296,436)(297,435)(298,434)
(299,433)(300,432)(301,431)(302,430)(303,429)(304,428)(305,427)(306,426)
(307,425)(308,424)(309,423)(310,422)(311,421)(312,420)(313,419)(314,418)
(315,417)(316,416)(317,415)(318,414)(319,413)(320,412)(321,411)(322,410)
(323,409)(324,408)(325,407)(326,406)(327,405)(328,404)(329,403)(330,402)
(331,401)(332,400)(333,399)(334,398)(335,397)(336,396)(337,395)(338,394)
(339,393)(340,392)(341,391)(342,390)(343,389)(344,388)(345,387)(346,386)
(347,385)(348,384)(349,383)(350,382)(351,381)(352,380)(353,379)(354,378)
(355,377)(356,376)(357,375)(358,374)(359,373)(360,372)(361,371)(362,370)
(363,369)(364,368)(365,367);
s1 := Sym(438)!(  1,294)(  2,293)(  3,365)(  4,364)(  5,363)(  6,362)(  7,361)
(  8,360)(  9,359)( 10,358)( 11,357)( 12,356)( 13,355)( 14,354)( 15,353)
( 16,352)( 17,351)( 18,350)( 19,349)( 20,348)( 21,347)( 22,346)( 23,345)
( 24,344)( 25,343)( 26,342)( 27,341)( 28,340)( 29,339)( 30,338)( 31,337)
( 32,336)( 33,335)( 34,334)( 35,333)( 36,332)( 37,331)( 38,330)( 39,329)
( 40,328)( 41,327)( 42,326)( 43,325)( 44,324)( 45,323)( 46,322)( 47,321)
( 48,320)( 49,319)( 50,318)( 51,317)( 52,316)( 53,315)( 54,314)( 55,313)
( 56,312)( 57,311)( 58,310)( 59,309)( 60,308)( 61,307)( 62,306)( 63,305)
( 64,304)( 65,303)( 66,302)( 67,301)( 68,300)( 69,299)( 70,298)( 71,297)
( 72,296)( 73,295)( 74,221)( 75,220)( 76,292)( 77,291)( 78,290)( 79,289)
( 80,288)( 81,287)( 82,286)( 83,285)( 84,284)( 85,283)( 86,282)( 87,281)
( 88,280)( 89,279)( 90,278)( 91,277)( 92,276)( 93,275)( 94,274)( 95,273)
( 96,272)( 97,271)( 98,270)( 99,269)(100,268)(101,267)(102,266)(103,265)
(104,264)(105,263)(106,262)(107,261)(108,260)(109,259)(110,258)(111,257)
(112,256)(113,255)(114,254)(115,253)(116,252)(117,251)(118,250)(119,249)
(120,248)(121,247)(122,246)(123,245)(124,244)(125,243)(126,242)(127,241)
(128,240)(129,239)(130,238)(131,237)(132,236)(133,235)(134,234)(135,233)
(136,232)(137,231)(138,230)(139,229)(140,228)(141,227)(142,226)(143,225)
(144,224)(145,223)(146,222)(147,367)(148,366)(149,438)(150,437)(151,436)
(152,435)(153,434)(154,433)(155,432)(156,431)(157,430)(158,429)(159,428)
(160,427)(161,426)(162,425)(163,424)(164,423)(165,422)(166,421)(167,420)
(168,419)(169,418)(170,417)(171,416)(172,415)(173,414)(174,413)(175,412)
(176,411)(177,410)(178,409)(179,408)(180,407)(181,406)(182,405)(183,404)
(184,403)(185,402)(186,401)(187,400)(188,399)(189,398)(190,397)(191,396)
(192,395)(193,394)(194,393)(195,392)(196,391)(197,390)(198,389)(199,388)
(200,387)(201,386)(202,385)(203,384)(204,383)(205,382)(206,381)(207,380)
(208,379)(209,378)(210,377)(211,376)(212,375)(213,374)(214,373)(215,372)
(216,371)(217,370)(218,369)(219,368);
poly := sub<Sym(438)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope