Questions?
See the FAQ
or other info.

Polytope of Type {2,2,11}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,11}*88
if this polytope has a name.
Group : SmallGroup(88,11)
Rank : 4
Schlafli Type : {2,2,11}
Number of vertices, edges, etc : 2, 2, 11, 11
Order of s0s1s2s3 : 22
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,11,2} of size 176
   {2,2,11,22} of size 1936
Vertex Figure Of :
   {2,2,2,11} of size 176
   {3,2,2,11} of size 264
   {4,2,2,11} of size 352
   {5,2,2,11} of size 440
   {6,2,2,11} of size 528
   {7,2,2,11} of size 616
   {8,2,2,11} of size 704
   {9,2,2,11} of size 792
   {10,2,2,11} of size 880
   {11,2,2,11} of size 968
   {12,2,2,11} of size 1056
   {13,2,2,11} of size 1144
   {14,2,2,11} of size 1232
   {15,2,2,11} of size 1320
   {16,2,2,11} of size 1408
   {17,2,2,11} of size 1496
   {18,2,2,11} of size 1584
   {19,2,2,11} of size 1672
   {20,2,2,11} of size 1760
   {21,2,2,11} of size 1848
   {22,2,2,11} of size 1936
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {4,2,11}*176, {2,2,22}*176
   3-fold covers : {6,2,11}*264, {2,2,33}*264
   4-fold covers : {8,2,11}*352, {2,2,44}*352, {2,4,22}*352, {4,2,22}*352
   5-fold covers : {10,2,11}*440, {2,2,55}*440
   6-fold covers : {12,2,11}*528, {4,2,33}*528, {2,6,22}*528, {6,2,22}*528, {2,2,66}*528
   7-fold covers : {14,2,11}*616, {2,2,77}*616
   8-fold covers : {16,2,11}*704, {2,4,44}*704, {4,2,44}*704, {4,4,22}*704, {2,2,88}*704, {2,8,22}*704, {8,2,22}*704
   9-fold covers : {18,2,11}*792, {2,2,99}*792, {2,6,33}*792, {6,2,33}*792
   10-fold covers : {20,2,11}*880, {4,2,55}*880, {2,10,22}*880, {10,2,22}*880, {2,2,110}*880
   11-fold covers : {2,2,121}*968, {2,22,11}*968, {22,2,11}*968
   12-fold covers : {24,2,11}*1056, {8,2,33}*1056, {2,12,22}*1056, {12,2,22}*1056, {2,6,44}*1056a, {6,2,44}*1056, {4,6,22}*1056a, {6,4,22}*1056, {2,2,132}*1056, {2,4,66}*1056a, {4,2,66}*1056, {2,6,33}*1056, {2,4,33}*1056
   13-fold covers : {26,2,11}*1144, {2,2,143}*1144
   14-fold covers : {28,2,11}*1232, {4,2,77}*1232, {2,14,22}*1232, {14,2,22}*1232, {2,2,154}*1232
   15-fold covers : {30,2,11}*1320, {10,2,33}*1320, {6,2,55}*1320, {2,2,165}*1320
   16-fold covers : {32,2,11}*1408, {4,4,44}*1408, {4,8,22}*1408a, {8,4,22}*1408a, {2,8,44}*1408a, {2,4,88}*1408a, {4,8,22}*1408b, {8,4,22}*1408b, {2,8,44}*1408b, {2,4,88}*1408b, {4,4,22}*1408, {2,4,44}*1408, {8,2,44}*1408, {4,2,88}*1408, {2,16,22}*1408, {16,2,22}*1408, {2,2,176}*1408
   17-fold covers : {34,2,11}*1496, {2,2,187}*1496
   18-fold covers : {36,2,11}*1584, {4,2,99}*1584, {2,18,22}*1584, {18,2,22}*1584, {2,2,198}*1584, {12,2,33}*1584, {4,6,33}*1584, {6,6,22}*1584a, {6,6,22}*1584b, {6,6,22}*1584c, {2,6,66}*1584a, {2,6,66}*1584b, {2,6,66}*1584c, {6,2,66}*1584
   19-fold covers : {38,2,11}*1672, {2,2,209}*1672
   20-fold covers : {40,2,11}*1760, {8,2,55}*1760, {2,20,22}*1760, {20,2,22}*1760, {2,10,44}*1760, {10,2,44}*1760, {4,10,22}*1760, {10,4,22}*1760, {2,2,220}*1760, {2,4,110}*1760, {4,2,110}*1760
   21-fold covers : {42,2,11}*1848, {14,2,33}*1848, {6,2,77}*1848, {2,2,231}*1848
   22-fold covers : {4,2,121}*1936, {2,2,242}*1936, {44,2,11}*1936, {4,22,11}*1936, {2,22,22}*1936a, {2,22,22}*1936b, {22,2,22}*1936
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 6, 7)( 8, 9)(10,11)(12,13)(14,15);;
s3 := ( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(15)!(1,2);
s1 := Sym(15)!(3,4);
s2 := Sym(15)!( 6, 7)( 8, 9)(10,11)(12,13)(14,15);
s3 := Sym(15)!( 5, 6)( 7, 8)( 9,10)(11,12)(13,14);
poly := sub<Sym(15)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope