Questions?
See the FAQ
or other info.

Polytope of Type {440}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {440}*880
Also Known As : 440-gon, {440}. if this polytope has another name.
Group : SmallGroup(880,93)
Rank : 2
Schlafli Type : {440}
Number of vertices, edges, etc : 440, 440
Order of s0s1 : 440
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {440,2} of size 1760
Vertex Figure Of :
   {2,440} of size 1760
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {220}*440
   4-fold quotients : {110}*220
   5-fold quotients : {88}*176
   8-fold quotients : {55}*110
   10-fold quotients : {44}*88
   11-fold quotients : {40}*80
   20-fold quotients : {22}*44
   22-fold quotients : {20}*40
   40-fold quotients : {11}*22
   44-fold quotients : {10}*20
   55-fold quotients : {8}*16
   88-fold quotients : {5}*10
   110-fold quotients : {4}*8
   220-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {880}*1760
Permutation Representation (GAP) :
s0 := (  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 45)( 13, 55)( 14, 54)
( 15, 53)( 16, 52)( 17, 51)( 18, 50)( 19, 49)( 20, 48)( 21, 47)( 22, 46)
( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)( 28, 40)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 57, 66)( 58, 65)( 59, 64)( 60, 63)( 61, 62)
( 67,100)( 68,110)( 69,109)( 70,108)( 71,107)( 72,106)( 73,105)( 74,104)
( 75,103)( 76,102)( 77,101)( 78, 89)( 79, 99)( 80, 98)( 81, 97)( 82, 96)
( 83, 95)( 84, 94)( 85, 93)( 86, 92)( 87, 91)( 88, 90)(111,166)(112,176)
(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)(120,168)
(121,167)(122,210)(123,220)(124,219)(125,218)(126,217)(127,216)(128,215)
(129,214)(130,213)(131,212)(132,211)(133,199)(134,209)(135,208)(136,207)
(137,206)(138,205)(139,204)(140,203)(141,202)(142,201)(143,200)(144,188)
(145,198)(146,197)(147,196)(148,195)(149,194)(150,193)(151,192)(152,191)
(153,190)(154,189)(155,177)(156,187)(157,186)(158,185)(159,184)(160,183)
(161,182)(162,181)(163,180)(164,179)(165,178)(221,331)(222,341)(223,340)
(224,339)(225,338)(226,337)(227,336)(228,335)(229,334)(230,333)(231,332)
(232,375)(233,385)(234,384)(235,383)(236,382)(237,381)(238,380)(239,379)
(240,378)(241,377)(242,376)(243,364)(244,374)(245,373)(246,372)(247,371)
(248,370)(249,369)(250,368)(251,367)(252,366)(253,365)(254,353)(255,363)
(256,362)(257,361)(258,360)(259,359)(260,358)(261,357)(262,356)(263,355)
(264,354)(265,342)(266,352)(267,351)(268,350)(269,349)(270,348)(271,347)
(272,346)(273,345)(274,344)(275,343)(276,386)(277,396)(278,395)(279,394)
(280,393)(281,392)(282,391)(283,390)(284,389)(285,388)(286,387)(287,430)
(288,440)(289,439)(290,438)(291,437)(292,436)(293,435)(294,434)(295,433)
(296,432)(297,431)(298,419)(299,429)(300,428)(301,427)(302,426)(303,425)
(304,424)(305,423)(306,422)(307,421)(308,420)(309,408)(310,418)(311,417)
(312,416)(313,415)(314,414)(315,413)(316,412)(317,411)(318,410)(319,409)
(320,397)(321,407)(322,406)(323,405)(324,404)(325,403)(326,402)(327,401)
(328,400)(329,399)(330,398);;
s1 := (  1,233)(  2,232)(  3,242)(  4,241)(  5,240)(  6,239)(  7,238)(  8,237)
(  9,236)( 10,235)( 11,234)( 12,222)( 13,221)( 14,231)( 15,230)( 16,229)
( 17,228)( 18,227)( 19,226)( 20,225)( 21,224)( 22,223)( 23,266)( 24,265)
( 25,275)( 26,274)( 27,273)( 28,272)( 29,271)( 30,270)( 31,269)( 32,268)
( 33,267)( 34,255)( 35,254)( 36,264)( 37,263)( 38,262)( 39,261)( 40,260)
( 41,259)( 42,258)( 43,257)( 44,256)( 45,244)( 46,243)( 47,253)( 48,252)
( 49,251)( 50,250)( 51,249)( 52,248)( 53,247)( 54,246)( 55,245)( 56,288)
( 57,287)( 58,297)( 59,296)( 60,295)( 61,294)( 62,293)( 63,292)( 64,291)
( 65,290)( 66,289)( 67,277)( 68,276)( 69,286)( 70,285)( 71,284)( 72,283)
( 73,282)( 74,281)( 75,280)( 76,279)( 77,278)( 78,321)( 79,320)( 80,330)
( 81,329)( 82,328)( 83,327)( 84,326)( 85,325)( 86,324)( 87,323)( 88,322)
( 89,310)( 90,309)( 91,319)( 92,318)( 93,317)( 94,316)( 95,315)( 96,314)
( 97,313)( 98,312)( 99,311)(100,299)(101,298)(102,308)(103,307)(104,306)
(105,305)(106,304)(107,303)(108,302)(109,301)(110,300)(111,398)(112,397)
(113,407)(114,406)(115,405)(116,404)(117,403)(118,402)(119,401)(120,400)
(121,399)(122,387)(123,386)(124,396)(125,395)(126,394)(127,393)(128,392)
(129,391)(130,390)(131,389)(132,388)(133,431)(134,430)(135,440)(136,439)
(137,438)(138,437)(139,436)(140,435)(141,434)(142,433)(143,432)(144,420)
(145,419)(146,429)(147,428)(148,427)(149,426)(150,425)(151,424)(152,423)
(153,422)(154,421)(155,409)(156,408)(157,418)(158,417)(159,416)(160,415)
(161,414)(162,413)(163,412)(164,411)(165,410)(166,343)(167,342)(168,352)
(169,351)(170,350)(171,349)(172,348)(173,347)(174,346)(175,345)(176,344)
(177,332)(178,331)(179,341)(180,340)(181,339)(182,338)(183,337)(184,336)
(185,335)(186,334)(187,333)(188,376)(189,375)(190,385)(191,384)(192,383)
(193,382)(194,381)(195,380)(196,379)(197,378)(198,377)(199,365)(200,364)
(201,374)(202,373)(203,372)(204,371)(205,370)(206,369)(207,368)(208,367)
(209,366)(210,354)(211,353)(212,363)(213,362)(214,361)(215,360)(216,359)
(217,358)(218,357)(219,356)(220,355);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(440)!(  2, 11)(  3, 10)(  4,  9)(  5,  8)(  6,  7)( 12, 45)( 13, 55)
( 14, 54)( 15, 53)( 16, 52)( 17, 51)( 18, 50)( 19, 49)( 20, 48)( 21, 47)
( 22, 46)( 23, 34)( 24, 44)( 25, 43)( 26, 42)( 27, 41)( 28, 40)( 29, 39)
( 30, 38)( 31, 37)( 32, 36)( 33, 35)( 57, 66)( 58, 65)( 59, 64)( 60, 63)
( 61, 62)( 67,100)( 68,110)( 69,109)( 70,108)( 71,107)( 72,106)( 73,105)
( 74,104)( 75,103)( 76,102)( 77,101)( 78, 89)( 79, 99)( 80, 98)( 81, 97)
( 82, 96)( 83, 95)( 84, 94)( 85, 93)( 86, 92)( 87, 91)( 88, 90)(111,166)
(112,176)(113,175)(114,174)(115,173)(116,172)(117,171)(118,170)(119,169)
(120,168)(121,167)(122,210)(123,220)(124,219)(125,218)(126,217)(127,216)
(128,215)(129,214)(130,213)(131,212)(132,211)(133,199)(134,209)(135,208)
(136,207)(137,206)(138,205)(139,204)(140,203)(141,202)(142,201)(143,200)
(144,188)(145,198)(146,197)(147,196)(148,195)(149,194)(150,193)(151,192)
(152,191)(153,190)(154,189)(155,177)(156,187)(157,186)(158,185)(159,184)
(160,183)(161,182)(162,181)(163,180)(164,179)(165,178)(221,331)(222,341)
(223,340)(224,339)(225,338)(226,337)(227,336)(228,335)(229,334)(230,333)
(231,332)(232,375)(233,385)(234,384)(235,383)(236,382)(237,381)(238,380)
(239,379)(240,378)(241,377)(242,376)(243,364)(244,374)(245,373)(246,372)
(247,371)(248,370)(249,369)(250,368)(251,367)(252,366)(253,365)(254,353)
(255,363)(256,362)(257,361)(258,360)(259,359)(260,358)(261,357)(262,356)
(263,355)(264,354)(265,342)(266,352)(267,351)(268,350)(269,349)(270,348)
(271,347)(272,346)(273,345)(274,344)(275,343)(276,386)(277,396)(278,395)
(279,394)(280,393)(281,392)(282,391)(283,390)(284,389)(285,388)(286,387)
(287,430)(288,440)(289,439)(290,438)(291,437)(292,436)(293,435)(294,434)
(295,433)(296,432)(297,431)(298,419)(299,429)(300,428)(301,427)(302,426)
(303,425)(304,424)(305,423)(306,422)(307,421)(308,420)(309,408)(310,418)
(311,417)(312,416)(313,415)(314,414)(315,413)(316,412)(317,411)(318,410)
(319,409)(320,397)(321,407)(322,406)(323,405)(324,404)(325,403)(326,402)
(327,401)(328,400)(329,399)(330,398);
s1 := Sym(440)!(  1,233)(  2,232)(  3,242)(  4,241)(  5,240)(  6,239)(  7,238)
(  8,237)(  9,236)( 10,235)( 11,234)( 12,222)( 13,221)( 14,231)( 15,230)
( 16,229)( 17,228)( 18,227)( 19,226)( 20,225)( 21,224)( 22,223)( 23,266)
( 24,265)( 25,275)( 26,274)( 27,273)( 28,272)( 29,271)( 30,270)( 31,269)
( 32,268)( 33,267)( 34,255)( 35,254)( 36,264)( 37,263)( 38,262)( 39,261)
( 40,260)( 41,259)( 42,258)( 43,257)( 44,256)( 45,244)( 46,243)( 47,253)
( 48,252)( 49,251)( 50,250)( 51,249)( 52,248)( 53,247)( 54,246)( 55,245)
( 56,288)( 57,287)( 58,297)( 59,296)( 60,295)( 61,294)( 62,293)( 63,292)
( 64,291)( 65,290)( 66,289)( 67,277)( 68,276)( 69,286)( 70,285)( 71,284)
( 72,283)( 73,282)( 74,281)( 75,280)( 76,279)( 77,278)( 78,321)( 79,320)
( 80,330)( 81,329)( 82,328)( 83,327)( 84,326)( 85,325)( 86,324)( 87,323)
( 88,322)( 89,310)( 90,309)( 91,319)( 92,318)( 93,317)( 94,316)( 95,315)
( 96,314)( 97,313)( 98,312)( 99,311)(100,299)(101,298)(102,308)(103,307)
(104,306)(105,305)(106,304)(107,303)(108,302)(109,301)(110,300)(111,398)
(112,397)(113,407)(114,406)(115,405)(116,404)(117,403)(118,402)(119,401)
(120,400)(121,399)(122,387)(123,386)(124,396)(125,395)(126,394)(127,393)
(128,392)(129,391)(130,390)(131,389)(132,388)(133,431)(134,430)(135,440)
(136,439)(137,438)(138,437)(139,436)(140,435)(141,434)(142,433)(143,432)
(144,420)(145,419)(146,429)(147,428)(148,427)(149,426)(150,425)(151,424)
(152,423)(153,422)(154,421)(155,409)(156,408)(157,418)(158,417)(159,416)
(160,415)(161,414)(162,413)(163,412)(164,411)(165,410)(166,343)(167,342)
(168,352)(169,351)(170,350)(171,349)(172,348)(173,347)(174,346)(175,345)
(176,344)(177,332)(178,331)(179,341)(180,340)(181,339)(182,338)(183,337)
(184,336)(185,335)(186,334)(187,333)(188,376)(189,375)(190,385)(191,384)
(192,383)(193,382)(194,381)(195,380)(196,379)(197,378)(198,377)(199,365)
(200,364)(201,374)(202,373)(203,372)(204,371)(205,370)(206,369)(207,368)
(208,367)(209,366)(210,354)(211,353)(212,363)(213,362)(214,361)(215,360)
(216,359)(217,358)(218,357)(219,356)(220,355);
poly := sub<Sym(440)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope