Questions?
See the FAQ
or other info.

Polytope of Type {460}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {460}*920
Also Known As : 460-gon, {460}. if this polytope has another name.
Group : SmallGroup(920,26)
Rank : 2
Schlafli Type : {460}
Number of vertices, edges, etc : 460, 460
Order of s0s1 : 460
Special Properties :
   Universal
   Spherical
   Locally Spherical
   Orientable
   Self-Dual
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {460,2} of size 1840
Vertex Figure Of :
   {2,460} of size 1840
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {230}*460
   4-fold quotients : {115}*230
   5-fold quotients : {92}*184
   10-fold quotients : {46}*92
   20-fold quotients : {23}*46
   23-fold quotients : {20}*40
   46-fold quotients : {10}*20
   92-fold quotients : {5}*10
   115-fold quotients : {4}*8
   230-fold quotients : {2}*4
Covers (Minimal Covers in Boldface) :
   2-fold covers : {920}*1840
Permutation Representation (GAP) :
s0 := (  2, 23)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)(  9, 16)
( 10, 15)( 11, 14)( 12, 13)( 24, 93)( 25,115)( 26,114)( 27,113)( 28,112)
( 29,111)( 30,110)( 31,109)( 32,108)( 33,107)( 34,106)( 35,105)( 36,104)
( 37,103)( 38,102)( 39,101)( 40,100)( 41, 99)( 42, 98)( 43, 97)( 44, 96)
( 45, 95)( 46, 94)( 47, 70)( 48, 92)( 49, 91)( 50, 90)( 51, 89)( 52, 88)
( 53, 87)( 54, 86)( 55, 85)( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60, 80)
( 61, 79)( 62, 78)( 63, 77)( 64, 76)( 65, 75)( 66, 74)( 67, 73)( 68, 72)
( 69, 71)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,132)
(124,131)(125,130)(126,129)(127,128)(139,208)(140,230)(141,229)(142,228)
(143,227)(144,226)(145,225)(146,224)(147,223)(148,222)(149,221)(150,220)
(151,219)(152,218)(153,217)(154,216)(155,215)(156,214)(157,213)(158,212)
(159,211)(160,210)(161,209)(162,185)(163,207)(164,206)(165,205)(166,204)
(167,203)(168,202)(169,201)(170,200)(171,199)(172,198)(173,197)(174,196)
(175,195)(176,194)(177,193)(178,192)(179,191)(180,190)(181,189)(182,188)
(183,187)(184,186)(231,346)(232,368)(233,367)(234,366)(235,365)(236,364)
(237,363)(238,362)(239,361)(240,360)(241,359)(242,358)(243,357)(244,356)
(245,355)(246,354)(247,353)(248,352)(249,351)(250,350)(251,349)(252,348)
(253,347)(254,438)(255,460)(256,459)(257,458)(258,457)(259,456)(260,455)
(261,454)(262,453)(263,452)(264,451)(265,450)(266,449)(267,448)(268,447)
(269,446)(270,445)(271,444)(272,443)(273,442)(274,441)(275,440)(276,439)
(277,415)(278,437)(279,436)(280,435)(281,434)(282,433)(283,432)(284,431)
(285,430)(286,429)(287,428)(288,427)(289,426)(290,425)(291,424)(292,423)
(293,422)(294,421)(295,420)(296,419)(297,418)(298,417)(299,416)(300,392)
(301,414)(302,413)(303,412)(304,411)(305,410)(306,409)(307,408)(308,407)
(309,406)(310,405)(311,404)(312,403)(313,402)(314,401)(315,400)(316,399)
(317,398)(318,397)(319,396)(320,395)(321,394)(322,393)(323,369)(324,391)
(325,390)(326,389)(327,388)(328,387)(329,386)(330,385)(331,384)(332,383)
(333,382)(334,381)(335,380)(336,379)(337,378)(338,377)(339,376)(340,375)
(341,374)(342,373)(343,372)(344,371)(345,370);;
s1 := (  1,255)(  2,254)(  3,276)(  4,275)(  5,274)(  6,273)(  7,272)(  8,271)
(  9,270)( 10,269)( 11,268)( 12,267)( 13,266)( 14,265)( 15,264)( 16,263)
( 17,262)( 18,261)( 19,260)( 20,259)( 21,258)( 22,257)( 23,256)( 24,232)
( 25,231)( 26,253)( 27,252)( 28,251)( 29,250)( 30,249)( 31,248)( 32,247)
( 33,246)( 34,245)( 35,244)( 36,243)( 37,242)( 38,241)( 39,240)( 40,239)
( 41,238)( 42,237)( 43,236)( 44,235)( 45,234)( 46,233)( 47,324)( 48,323)
( 49,345)( 50,344)( 51,343)( 52,342)( 53,341)( 54,340)( 55,339)( 56,338)
( 57,337)( 58,336)( 59,335)( 60,334)( 61,333)( 62,332)( 63,331)( 64,330)
( 65,329)( 66,328)( 67,327)( 68,326)( 69,325)( 70,301)( 71,300)( 72,322)
( 73,321)( 74,320)( 75,319)( 76,318)( 77,317)( 78,316)( 79,315)( 80,314)
( 81,313)( 82,312)( 83,311)( 84,310)( 85,309)( 86,308)( 87,307)( 88,306)
( 89,305)( 90,304)( 91,303)( 92,302)( 93,278)( 94,277)( 95,299)( 96,298)
( 97,297)( 98,296)( 99,295)(100,294)(101,293)(102,292)(103,291)(104,290)
(105,289)(106,288)(107,287)(108,286)(109,285)(110,284)(111,283)(112,282)
(113,281)(114,280)(115,279)(116,370)(117,369)(118,391)(119,390)(120,389)
(121,388)(122,387)(123,386)(124,385)(125,384)(126,383)(127,382)(128,381)
(129,380)(130,379)(131,378)(132,377)(133,376)(134,375)(135,374)(136,373)
(137,372)(138,371)(139,347)(140,346)(141,368)(142,367)(143,366)(144,365)
(145,364)(146,363)(147,362)(148,361)(149,360)(150,359)(151,358)(152,357)
(153,356)(154,355)(155,354)(156,353)(157,352)(158,351)(159,350)(160,349)
(161,348)(162,439)(163,438)(164,460)(165,459)(166,458)(167,457)(168,456)
(169,455)(170,454)(171,453)(172,452)(173,451)(174,450)(175,449)(176,448)
(177,447)(178,446)(179,445)(180,444)(181,443)(182,442)(183,441)(184,440)
(185,416)(186,415)(187,437)(188,436)(189,435)(190,434)(191,433)(192,432)
(193,431)(194,430)(195,429)(196,428)(197,427)(198,426)(199,425)(200,424)
(201,423)(202,422)(203,421)(204,420)(205,419)(206,418)(207,417)(208,393)
(209,392)(210,414)(211,413)(212,412)(213,411)(214,410)(215,409)(216,408)
(217,407)(218,406)(219,405)(220,404)(221,403)(222,402)(223,401)(224,400)
(225,399)(226,398)(227,397)(228,396)(229,395)(230,394);;
poly := Group([s0,s1]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1");;
s0 := F.1;;  s1 := F.2;;  
rels := [ s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(460)!(  2, 23)(  3, 22)(  4, 21)(  5, 20)(  6, 19)(  7, 18)(  8, 17)
(  9, 16)( 10, 15)( 11, 14)( 12, 13)( 24, 93)( 25,115)( 26,114)( 27,113)
( 28,112)( 29,111)( 30,110)( 31,109)( 32,108)( 33,107)( 34,106)( 35,105)
( 36,104)( 37,103)( 38,102)( 39,101)( 40,100)( 41, 99)( 42, 98)( 43, 97)
( 44, 96)( 45, 95)( 46, 94)( 47, 70)( 48, 92)( 49, 91)( 50, 90)( 51, 89)
( 52, 88)( 53, 87)( 54, 86)( 55, 85)( 56, 84)( 57, 83)( 58, 82)( 59, 81)
( 60, 80)( 61, 79)( 62, 78)( 63, 77)( 64, 76)( 65, 75)( 66, 74)( 67, 73)
( 68, 72)( 69, 71)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)
(123,132)(124,131)(125,130)(126,129)(127,128)(139,208)(140,230)(141,229)
(142,228)(143,227)(144,226)(145,225)(146,224)(147,223)(148,222)(149,221)
(150,220)(151,219)(152,218)(153,217)(154,216)(155,215)(156,214)(157,213)
(158,212)(159,211)(160,210)(161,209)(162,185)(163,207)(164,206)(165,205)
(166,204)(167,203)(168,202)(169,201)(170,200)(171,199)(172,198)(173,197)
(174,196)(175,195)(176,194)(177,193)(178,192)(179,191)(180,190)(181,189)
(182,188)(183,187)(184,186)(231,346)(232,368)(233,367)(234,366)(235,365)
(236,364)(237,363)(238,362)(239,361)(240,360)(241,359)(242,358)(243,357)
(244,356)(245,355)(246,354)(247,353)(248,352)(249,351)(250,350)(251,349)
(252,348)(253,347)(254,438)(255,460)(256,459)(257,458)(258,457)(259,456)
(260,455)(261,454)(262,453)(263,452)(264,451)(265,450)(266,449)(267,448)
(268,447)(269,446)(270,445)(271,444)(272,443)(273,442)(274,441)(275,440)
(276,439)(277,415)(278,437)(279,436)(280,435)(281,434)(282,433)(283,432)
(284,431)(285,430)(286,429)(287,428)(288,427)(289,426)(290,425)(291,424)
(292,423)(293,422)(294,421)(295,420)(296,419)(297,418)(298,417)(299,416)
(300,392)(301,414)(302,413)(303,412)(304,411)(305,410)(306,409)(307,408)
(308,407)(309,406)(310,405)(311,404)(312,403)(313,402)(314,401)(315,400)
(316,399)(317,398)(318,397)(319,396)(320,395)(321,394)(322,393)(323,369)
(324,391)(325,390)(326,389)(327,388)(328,387)(329,386)(330,385)(331,384)
(332,383)(333,382)(334,381)(335,380)(336,379)(337,378)(338,377)(339,376)
(340,375)(341,374)(342,373)(343,372)(344,371)(345,370);
s1 := Sym(460)!(  1,255)(  2,254)(  3,276)(  4,275)(  5,274)(  6,273)(  7,272)
(  8,271)(  9,270)( 10,269)( 11,268)( 12,267)( 13,266)( 14,265)( 15,264)
( 16,263)( 17,262)( 18,261)( 19,260)( 20,259)( 21,258)( 22,257)( 23,256)
( 24,232)( 25,231)( 26,253)( 27,252)( 28,251)( 29,250)( 30,249)( 31,248)
( 32,247)( 33,246)( 34,245)( 35,244)( 36,243)( 37,242)( 38,241)( 39,240)
( 40,239)( 41,238)( 42,237)( 43,236)( 44,235)( 45,234)( 46,233)( 47,324)
( 48,323)( 49,345)( 50,344)( 51,343)( 52,342)( 53,341)( 54,340)( 55,339)
( 56,338)( 57,337)( 58,336)( 59,335)( 60,334)( 61,333)( 62,332)( 63,331)
( 64,330)( 65,329)( 66,328)( 67,327)( 68,326)( 69,325)( 70,301)( 71,300)
( 72,322)( 73,321)( 74,320)( 75,319)( 76,318)( 77,317)( 78,316)( 79,315)
( 80,314)( 81,313)( 82,312)( 83,311)( 84,310)( 85,309)( 86,308)( 87,307)
( 88,306)( 89,305)( 90,304)( 91,303)( 92,302)( 93,278)( 94,277)( 95,299)
( 96,298)( 97,297)( 98,296)( 99,295)(100,294)(101,293)(102,292)(103,291)
(104,290)(105,289)(106,288)(107,287)(108,286)(109,285)(110,284)(111,283)
(112,282)(113,281)(114,280)(115,279)(116,370)(117,369)(118,391)(119,390)
(120,389)(121,388)(122,387)(123,386)(124,385)(125,384)(126,383)(127,382)
(128,381)(129,380)(130,379)(131,378)(132,377)(133,376)(134,375)(135,374)
(136,373)(137,372)(138,371)(139,347)(140,346)(141,368)(142,367)(143,366)
(144,365)(145,364)(146,363)(147,362)(148,361)(149,360)(150,359)(151,358)
(152,357)(153,356)(154,355)(155,354)(156,353)(157,352)(158,351)(159,350)
(160,349)(161,348)(162,439)(163,438)(164,460)(165,459)(166,458)(167,457)
(168,456)(169,455)(170,454)(171,453)(172,452)(173,451)(174,450)(175,449)
(176,448)(177,447)(178,446)(179,445)(180,444)(181,443)(182,442)(183,441)
(184,440)(185,416)(186,415)(187,437)(188,436)(189,435)(190,434)(191,433)
(192,432)(193,431)(194,430)(195,429)(196,428)(197,427)(198,426)(199,425)
(200,424)(201,423)(202,422)(203,421)(204,420)(205,419)(206,418)(207,417)
(208,393)(209,392)(210,414)(211,413)(212,412)(213,411)(214,410)(215,409)
(216,408)(217,407)(218,406)(219,405)(220,404)(221,403)(222,402)(223,401)
(224,400)(225,399)(226,398)(227,397)(228,396)(229,395)(230,394);
poly := sub<Sym(460)|s0,s1>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1> := Group< s0,s1 | s0*s0, s1*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope