Questions?
See the FAQ
or other info.

Polytope of Type {116,2,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {116,2,2}*928
if this polytope has a name.
Group : SmallGroup(928,214)
Rank : 4
Schlafli Type : {116,2,2}
Number of vertices, edges, etc : 116, 116, 2, 2
Order of s0s1s2s3 : 116
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {116,2,2,2} of size 1856
Vertex Figure Of :
   {2,116,2,2} of size 1856
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {58,2,2}*464
   4-fold quotients : {29,2,2}*232
   29-fold quotients : {4,2,2}*32
   58-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   2-fold covers : {116,4,2}*1856, {116,2,4}*1856, {232,2,2}*1856
Permutation Representation (GAP) :
s0 := (  2, 29)(  3, 28)(  4, 27)(  5, 26)(  6, 25)(  7, 24)(  8, 23)(  9, 22)
( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 31, 58)( 32, 57)
( 33, 56)( 34, 55)( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)( 40, 49)
( 41, 48)( 42, 47)( 43, 46)( 44, 45)( 59, 88)( 60,116)( 61,115)( 62,114)
( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)( 70,106)
( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)( 78, 98)
( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)( 86, 90)
( 87, 89);;
s1 := (  1, 60)(  2, 59)(  3, 87)(  4, 86)(  5, 85)(  6, 84)(  7, 83)(  8, 82)
(  9, 81)( 10, 80)( 11, 79)( 12, 78)( 13, 77)( 14, 76)( 15, 75)( 16, 74)
( 17, 73)( 18, 72)( 19, 71)( 20, 70)( 21, 69)( 22, 68)( 23, 67)( 24, 66)
( 25, 65)( 26, 64)( 27, 63)( 28, 62)( 29, 61)( 30, 89)( 31, 88)( 32,116)
( 33,115)( 34,114)( 35,113)( 36,112)( 37,111)( 38,110)( 39,109)( 40,108)
( 41,107)( 42,106)( 43,105)( 44,104)( 45,103)( 46,102)( 47,101)( 48,100)
( 49, 99)( 50, 98)( 51, 97)( 52, 96)( 53, 95)( 54, 94)( 55, 93)( 56, 92)
( 57, 91)( 58, 90);;
s2 := (117,118);;
s3 := (119,120);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(120)!(  2, 29)(  3, 28)(  4, 27)(  5, 26)(  6, 25)(  7, 24)(  8, 23)
(  9, 22)( 10, 21)( 11, 20)( 12, 19)( 13, 18)( 14, 17)( 15, 16)( 31, 58)
( 32, 57)( 33, 56)( 34, 55)( 35, 54)( 36, 53)( 37, 52)( 38, 51)( 39, 50)
( 40, 49)( 41, 48)( 42, 47)( 43, 46)( 44, 45)( 59, 88)( 60,116)( 61,115)
( 62,114)( 63,113)( 64,112)( 65,111)( 66,110)( 67,109)( 68,108)( 69,107)
( 70,106)( 71,105)( 72,104)( 73,103)( 74,102)( 75,101)( 76,100)( 77, 99)
( 78, 98)( 79, 97)( 80, 96)( 81, 95)( 82, 94)( 83, 93)( 84, 92)( 85, 91)
( 86, 90)( 87, 89);
s1 := Sym(120)!(  1, 60)(  2, 59)(  3, 87)(  4, 86)(  5, 85)(  6, 84)(  7, 83)
(  8, 82)(  9, 81)( 10, 80)( 11, 79)( 12, 78)( 13, 77)( 14, 76)( 15, 75)
( 16, 74)( 17, 73)( 18, 72)( 19, 71)( 20, 70)( 21, 69)( 22, 68)( 23, 67)
( 24, 66)( 25, 65)( 26, 64)( 27, 63)( 28, 62)( 29, 61)( 30, 89)( 31, 88)
( 32,116)( 33,115)( 34,114)( 35,113)( 36,112)( 37,111)( 38,110)( 39,109)
( 40,108)( 41,107)( 42,106)( 43,105)( 44,104)( 45,103)( 46,102)( 47,101)
( 48,100)( 49, 99)( 50, 98)( 51, 97)( 52, 96)( 53, 95)( 54, 94)( 55, 93)
( 56, 92)( 57, 91)( 58, 90);
s2 := Sym(120)!(117,118);
s3 := Sym(120)!(119,120);
poly := sub<Sym(120)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 

to this polytope