Questions?
See the FAQ
or other info.

Polytope of Type {2,2,2,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,3,2}*96
if this polytope has a name.
Group : SmallGroup(96,230)
Rank : 6
Schlafli Type : {2,2,2,3,2}
Number of vertices, edges, etc : 2, 2, 2, 3, 3, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   {2,2,2,3,2,2} of size 192
   {2,2,2,3,2,3} of size 288
   {2,2,2,3,2,4} of size 384
   {2,2,2,3,2,5} of size 480
   {2,2,2,3,2,6} of size 576
   {2,2,2,3,2,7} of size 672
   {2,2,2,3,2,8} of size 768
   {2,2,2,3,2,9} of size 864
   {2,2,2,3,2,10} of size 960
   {2,2,2,3,2,11} of size 1056
   {2,2,2,3,2,12} of size 1152
   {2,2,2,3,2,13} of size 1248
   {2,2,2,3,2,14} of size 1344
   {2,2,2,3,2,15} of size 1440
   {2,2,2,3,2,17} of size 1632
   {2,2,2,3,2,18} of size 1728
   {2,2,2,3,2,19} of size 1824
   {2,2,2,3,2,20} of size 1920
Vertex Figure Of :
   {2,2,2,2,3,2} of size 192
   {3,2,2,2,3,2} of size 288
   {4,2,2,2,3,2} of size 384
   {5,2,2,2,3,2} of size 480
   {6,2,2,2,3,2} of size 576
   {7,2,2,2,3,2} of size 672
   {8,2,2,2,3,2} of size 768
   {9,2,2,2,3,2} of size 864
   {10,2,2,2,3,2} of size 960
   {11,2,2,2,3,2} of size 1056
   {12,2,2,2,3,2} of size 1152
   {13,2,2,2,3,2} of size 1248
   {14,2,2,2,3,2} of size 1344
   {15,2,2,2,3,2} of size 1440
   {17,2,2,2,3,2} of size 1632
   {18,2,2,2,3,2} of size 1728
   {19,2,2,2,3,2} of size 1824
   {20,2,2,2,3,2} of size 1920
Quotients (Maximal Quotients in Boldface) :
   No Regular Quotients.
Covers (Minimal Covers in Boldface) :
   2-fold covers : {2,4,2,3,2}*192, {4,2,2,3,2}*192, {2,2,2,6,2}*192
   3-fold covers : {2,2,2,9,2}*288, {2,2,2,3,6}*288, {2,2,6,3,2}*288, {2,6,2,3,2}*288, {6,2,2,3,2}*288
   4-fold covers : {4,4,2,3,2}*384, {2,8,2,3,2}*384, {8,2,2,3,2}*384, {2,2,2,12,2}*384, {2,2,2,6,4}*384a, {2,2,4,6,2}*384a, {2,4,2,6,2}*384, {4,2,2,6,2}*384, {2,2,2,3,4}*384, {2,2,4,3,2}*384
   5-fold covers : {2,10,2,3,2}*480, {10,2,2,3,2}*480, {2,2,2,15,2}*480
   6-fold covers : {2,4,2,9,2}*576, {4,2,2,9,2}*576, {2,2,2,18,2}*576, {2,12,2,3,2}*576, {12,2,2,3,2}*576, {2,4,2,3,6}*576, {4,2,2,3,6}*576, {4,2,6,3,2}*576, {4,6,2,3,2}*576a, {6,4,2,3,2}*576a, {2,4,6,3,2}*576, {2,2,2,6,6}*576a, {2,2,2,6,6}*576c, {2,2,6,6,2}*576a, {2,2,6,6,2}*576b, {2,6,2,6,2}*576, {6,2,2,6,2}*576
   7-fold covers : {2,14,2,3,2}*672, {14,2,2,3,2}*672, {2,2,2,21,2}*672
   8-fold covers : {4,8,2,3,2}*768a, {8,4,2,3,2}*768a, {4,8,2,3,2}*768b, {8,4,2,3,2}*768b, {4,4,2,3,2}*768, {2,16,2,3,2}*768, {16,2,2,3,2}*768, {2,4,4,6,2}*768, {4,4,2,6,2}*768, {2,2,2,12,4}*768a, {2,2,4,12,2}*768a, {2,4,2,6,4}*768a, {4,2,2,6,4}*768a, {4,2,4,6,2}*768a, {2,2,4,6,4}*768a, {2,4,2,12,2}*768, {4,2,2,12,2}*768, {2,2,2,6,8}*768, {2,2,8,6,2}*768, {2,8,2,6,2}*768, {8,2,2,6,2}*768, {2,2,2,24,2}*768, {2,4,2,3,4}*768, {2,4,4,3,2}*768b, {4,2,2,3,4}*768, {4,2,4,3,2}*768, {2,2,2,3,8}*768, {2,2,8,3,2}*768, {2,2,2,6,4}*768, {2,2,4,6,2}*768
   9-fold covers : {2,2,2,27,2}*864, {2,2,2,9,6}*864, {2,2,6,9,2}*864, {2,6,2,9,2}*864, {2,18,2,3,2}*864, {6,2,2,9,2}*864, {18,2,2,3,2}*864, {2,2,2,3,6}*864, {2,2,6,3,2}*864, {2,6,6,3,2}*864a, {2,2,6,3,6}*864, {2,6,2,3,6}*864, {2,6,6,3,2}*864b, {6,2,2,3,6}*864, {6,2,6,3,2}*864, {6,6,2,3,2}*864a, {6,6,2,3,2}*864b, {6,6,2,3,2}*864c
   10-fold covers : {2,20,2,3,2}*960, {20,2,2,3,2}*960, {4,10,2,3,2}*960, {10,4,2,3,2}*960, {2,4,2,15,2}*960, {4,2,2,15,2}*960, {2,2,2,6,10}*960, {2,2,10,6,2}*960, {2,10,2,6,2}*960, {10,2,2,6,2}*960, {2,2,2,30,2}*960
   11-fold covers : {2,22,2,3,2}*1056, {22,2,2,3,2}*1056, {2,2,2,33,2}*1056
   12-fold covers : {4,4,2,9,2}*1152, {4,4,2,3,6}*1152, {4,4,6,3,2}*1152, {4,12,2,3,2}*1152a, {12,4,2,3,2}*1152a, {2,8,2,9,2}*1152, {8,2,2,9,2}*1152, {2,8,2,3,6}*1152, {6,8,2,3,2}*1152, {8,2,2,3,6}*1152, {8,2,6,3,2}*1152, {8,6,2,3,2}*1152, {2,8,6,3,2}*1152, {2,24,2,3,2}*1152, {24,2,2,3,2}*1152, {2,2,2,18,4}*1152a, {2,2,4,18,2}*1152a, {2,4,2,18,2}*1152, {4,2,2,18,2}*1152, {2,2,2,36,2}*1152, {2,2,4,6,6}*1152a, {2,2,4,6,6}*1152b, {2,2,6,6,4}*1152a, {2,2,6,6,4}*1152b, {2,4,2,6,6}*1152a, {2,4,2,6,6}*1152c, {2,4,6,6,2}*1152a, {2,6,2,6,4}*1152a, {2,6,4,6,2}*1152, {4,2,2,6,6}*1152a, {4,2,2,6,6}*1152c, {4,2,6,6,2}*1152a, {4,2,6,6,2}*1152b, {4,6,2,6,2}*1152a, {6,2,2,6,4}*1152a, {6,2,4,6,2}*1152a, {6,4,2,6,2}*1152a, {2,2,2,6,12}*1152a, {2,2,12,6,2}*1152a, {2,4,6,6,2}*1152c, {2,2,2,6,12}*1152b, {2,2,2,12,6}*1152b, {2,2,2,12,6}*1152c, {2,2,6,12,2}*1152b, {2,2,6,12,2}*1152c, {2,2,12,6,2}*1152b, {2,6,2,12,2}*1152, {2,12,2,6,2}*1152, {6,2,2,12,2}*1152, {12,2,2,6,2}*1152, {2,2,2,9,4}*1152, {2,2,4,9,2}*1152, {2,2,2,3,6}*1152, {2,2,2,3,12}*1152, {2,2,4,3,6}*1152, {2,2,6,3,2}*1152, {2,2,6,3,4}*1152, {2,2,12,3,2}*1152, {2,6,2,3,4}*1152, {2,6,4,3,2}*1152, {4,6,2,3,2}*1152, {6,2,2,3,4}*1152, {6,2,4,3,2}*1152, {6,4,2,3,2}*1152, {6,6,2,3,2}*1152
   13-fold covers : {2,26,2,3,2}*1248, {26,2,2,3,2}*1248, {2,2,2,39,2}*1248
   14-fold covers : {2,28,2,3,2}*1344, {28,2,2,3,2}*1344, {4,14,2,3,2}*1344, {14,4,2,3,2}*1344, {2,4,2,21,2}*1344, {4,2,2,21,2}*1344, {2,2,2,6,14}*1344, {2,2,14,6,2}*1344, {2,14,2,6,2}*1344, {14,2,2,6,2}*1344, {2,2,2,42,2}*1344
   15-fold covers : {2,10,2,9,2}*1440, {10,2,2,9,2}*1440, {2,2,2,45,2}*1440, {2,10,2,3,6}*1440, {2,10,6,3,2}*1440, {6,10,2,3,2}*1440, {10,2,2,3,6}*1440, {10,2,6,3,2}*1440, {10,6,2,3,2}*1440, {2,2,2,15,6}*1440, {2,2,6,15,2}*1440, {2,6,2,15,2}*1440, {2,30,2,3,2}*1440, {6,2,2,15,2}*1440, {30,2,2,3,2}*1440
   17-fold covers : {2,34,2,3,2}*1632, {34,2,2,3,2}*1632, {2,2,2,51,2}*1632
   18-fold covers : {2,4,2,27,2}*1728, {4,2,2,27,2}*1728, {2,2,2,54,2}*1728, {2,12,2,9,2}*1728, {12,2,2,9,2}*1728, {2,36,2,3,2}*1728, {36,2,2,3,2}*1728, {2,12,6,3,2}*1728a, {2,4,2,9,6}*1728, {4,2,2,9,6}*1728, {4,2,6,9,2}*1728, {4,6,2,9,2}*1728a, {4,18,2,3,2}*1728a, {6,4,2,9,2}*1728a, {18,4,2,3,2}*1728a, {2,4,2,3,6}*1728, {4,2,2,3,6}*1728, {4,2,6,3,2}*1728, {4,6,6,3,2}*1728a, {2,4,6,9,2}*1728, {2,4,6,3,2}*1728a, {2,2,2,6,18}*1728a, {2,2,2,18,6}*1728a, {2,2,2,18,6}*1728b, {2,2,6,18,2}*1728a, {2,2,6,18,2}*1728b, {2,2,18,6,2}*1728a, {2,6,2,18,2}*1728, {2,18,2,6,2}*1728, {6,2,2,18,2}*1728, {18,2,2,6,2}*1728, {2,2,2,6,6}*1728b, {2,2,2,6,6}*1728c, {2,2,6,6,2}*1728a, {2,2,6,6,2}*1728b, {2,6,6,6,2}*1728a, {2,12,2,3,6}*1728, {6,12,2,3,2}*1728a, {6,12,2,3,2}*1728b, {12,2,2,3,6}*1728, {12,2,6,3,2}*1728, {12,6,2,3,2}*1728a, {12,6,2,3,2}*1728b, {4,2,6,3,6}*1728, {4,6,2,3,6}*1728a, {6,4,2,3,6}*1728a, {2,12,6,3,2}*1728b, {2,4,6,3,6}*1728, {6,4,6,3,2}*1728, {6,12,2,3,2}*1728c, {12,6,2,3,2}*1728c, {4,6,6,3,2}*1728d, {2,4,6,3,2}*1728b, {4,4,2,3,2}*1728, {4,6,2,3,2}*1728, {6,4,2,3,2}*1728, {2,2,2,6,6}*1728d, {2,2,6,6,2}*1728d, {2,2,6,6,6}*1728b, {2,2,6,6,6}*1728d, {2,2,6,6,6}*1728e, {2,2,6,6,6}*1728f, {2,6,2,6,6}*1728a, {2,6,2,6,6}*1728c, {2,6,6,6,2}*1728b, {2,6,6,6,2}*1728c, {2,6,6,6,2}*1728d, {2,6,6,6,2}*1728g, {6,2,2,6,6}*1728a, {6,2,2,6,6}*1728c, {6,2,6,6,2}*1728a, {6,2,6,6,2}*1728b, {6,6,2,6,2}*1728a, {6,6,2,6,2}*1728b, {6,6,2,6,2}*1728c
   19-fold covers : {2,38,2,3,2}*1824, {38,2,2,3,2}*1824, {2,2,2,57,2}*1824
   20-fold covers : {4,4,2,15,2}*1920, {4,20,2,3,2}*1920, {20,4,2,3,2}*1920, {2,8,2,15,2}*1920, {8,2,2,15,2}*1920, {8,10,2,3,2}*1920, {10,8,2,3,2}*1920, {2,40,2,3,2}*1920, {40,2,2,3,2}*1920, {2,2,2,30,4}*1920a, {2,2,4,30,2}*1920a, {2,4,2,30,2}*1920, {4,2,2,30,2}*1920, {2,2,2,60,2}*1920, {2,2,4,6,10}*1920a, {2,2,10,6,4}*1920a, {2,4,2,6,10}*1920, {2,4,10,6,2}*1920, {2,10,2,6,4}*1920a, {2,10,4,6,2}*1920, {4,2,2,6,10}*1920, {4,2,10,6,2}*1920, {4,10,2,6,2}*1920, {10,2,2,6,4}*1920a, {10,2,4,6,2}*1920a, {10,4,2,6,2}*1920, {2,2,2,12,10}*1920, {2,2,10,12,2}*1920, {2,10,2,12,2}*1920, {10,2,2,12,2}*1920, {2,2,2,6,20}*1920a, {2,2,20,6,2}*1920a, {2,20,2,6,2}*1920, {20,2,2,6,2}*1920, {2,10,2,3,4}*1920, {2,10,4,3,2}*1920, {10,2,2,3,4}*1920, {10,2,4,3,2}*1920, {2,2,2,15,4}*1920, {2,2,4,15,2}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := (8,9);;
s4 := (7,8);;
s5 := (10,11);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(11)!(1,2);
s1 := Sym(11)!(3,4);
s2 := Sym(11)!(5,6);
s3 := Sym(11)!(8,9);
s4 := Sym(11)!(7,8);
s5 := Sym(11)!(10,11);
poly := sub<Sym(11)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s3*s4*s3*s4*s3*s4 >; 
 

to this polytope