Questions?
See the FAQ
or other info.

Polytope of Type {12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,10}*960a
if this polytope has a name.
Group : SmallGroup(960,10870)
Rank : 3
Schlafli Type : {12,10}
Number of vertices, edges, etc : 48, 240, 40
Order of s0s1s2 : 8
Order of s0s1s2s1 : 8
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
Facet Of :
   {12,10,2} of size 1920
Vertex Figure Of :
   {2,12,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,10}*480b
   4-fold quotients : {6,5}*240a, {6,10}*240a, {6,10}*240b
   8-fold quotients : {6,5}*120a
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {12,10}*1920b, {12,20}*1920i, {12,20}*1920j
Permutation Representation (GAP) :
s0 := ( 1, 3)( 2,38)( 4,13)( 5,12)( 6,30)( 7,35)( 8,48)( 9,28)(10,27)(11,25)
(14,15)(16,46)(17,31)(18,19)(20,36)(21,43)(22,32)(23,41)(24,42)(26,29)(33,45)
(34,44)(37,47)(39,40);;
s1 := ( 2,34)( 3,21)( 4,39)( 6,40)( 7,36)( 8,10)( 9,29)(11,23)(12,45)(14,22)
(15,24)(16,33)(18,47)(19,38)(25,27)(26,31)(28,42)(30,46)(35,44)(41,43);;
s2 := ( 2,27)( 4,12)( 5,13)( 6,14)( 7, 9)(10,38)(11,33)(15,30)(16,26)(18,24)
(19,42)(20,37)(21,44)(23,40)(25,45)(28,35)(29,46)(34,43)(36,47)(39,41);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(48)!( 1, 3)( 2,38)( 4,13)( 5,12)( 6,30)( 7,35)( 8,48)( 9,28)(10,27)
(11,25)(14,15)(16,46)(17,31)(18,19)(20,36)(21,43)(22,32)(23,41)(24,42)(26,29)
(33,45)(34,44)(37,47)(39,40);
s1 := Sym(48)!( 2,34)( 3,21)( 4,39)( 6,40)( 7,36)( 8,10)( 9,29)(11,23)(12,45)
(14,22)(15,24)(16,33)(18,47)(19,38)(25,27)(26,31)(28,42)(30,46)(35,44)(41,43);
s2 := Sym(48)!( 2,27)( 4,12)( 5,13)( 6,14)( 7, 9)(10,38)(11,33)(15,30)(16,26)
(18,24)(19,42)(20,37)(21,44)(23,40)(25,45)(28,35)(29,46)(34,43)(36,47)(39,41);
poly := sub<Sym(48)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s0*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s2*s1*s0*s2*s1*s0*s2 >; 
 
References : None.
to this polytope