Questions?
See the FAQ
or other info.

# Polytope of Type {6,20}

Atlas Canonical Name : {6,20}*960a
if this polytope has a name.
Group : SmallGroup(960,10871)
Rank : 3
Schlafli Type : {6,20}
Number of vertices, edges, etc : 24, 240, 80
Order of s0s1s2 : 4
Order of s0s1s2s1 : 4
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{6,20,2} of size 1920
Vertex Figure Of :
{2,6,20} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,10}*480b
4-fold quotients : {6,5}*240a, {6,10}*240a, {6,10}*240b
8-fold quotients : {6,5}*120a
60-fold quotients : {2,4}*16
120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,20}*1920f, {6,40}*1920e, {12,20}*1920i, {6,20}*1920c, {6,40}*1920g
Permutation Representation (GAP) :
```s0 := (7,9);;
s1 := (2,3)(5,6)(8,9);;
s2 := (1,2)(3,4)(6,8)(7,9);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(9)!(7,9);
s1 := Sym(9)!(2,3)(5,6)(8,9);
s2 := Sym(9)!(1,2)(3,4)(6,8)(7,9);
poly := sub<Sym(9)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;

```
References : None.
to this polytope