Questions?
See the FAQ
or other info.

Polytope of Type {20,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {20,4}*960c
if this polytope has a name.
Group : SmallGroup(960,10871)
Rank : 3
Schlafli Type : {20,4}
Number of vertices, edges, etc : 120, 240, 24
Order of s0s1s2 : 12
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   {20,4,2} of size 1920
Vertex Figure Of :
   {2,20,4} of size 1920
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {10,4}*480c
   4-fold quotients : {5,4}*240, {10,4}*240a, {10,4}*240b
   8-fold quotients : {5,4}*120
   60-fold quotients : {4,2}*16
   120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   2-fold covers : {20,4}*1920a, {40,4}*1920a, {40,4}*1920b, {20,8}*1920b, {20,8}*1920c
Permutation Representation (GAP) :
s0 := (2,3)(6,7)(8,9);;
s1 := (1,2)(3,4)(5,6)(7,8);;
s2 := (6,7);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s2*s1*s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s1*s0 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(9)!(2,3)(6,7)(8,9);
s1 := Sym(9)!(1,2)(3,4)(5,6)(7,8);
s2 := Sym(9)!(6,7);
poly := sub<Sym(9)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1, 
s2*s1*s0*s1*s2*s1*s0*s2*s1*s0*s1*s0*s2*s1*s0*s2*s1*s0*s1*s0*s1*s2*s1*s0 >; 
 
References : None.
to this polytope