Questions?
See the FAQ
or other info.

# Polytope of Type {12,10}

Atlas Canonical Name : {12,10}*960c
if this polytope has a name.
Group : SmallGroup(960,10886)
Rank : 3
Schlafli Type : {12,10}
Number of vertices, edges, etc : 48, 240, 40
Order of s0s1s2 : 20
Order of s0s1s2s1 : 10
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Related Polytopes :
Facet
Vertex Figure
Dual
Petrial
Facet Of :
{12,10,2} of size 1920
Vertex Figure Of :
{2,12,10} of size 1920
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {12,10}*480c, {12,10}*480d, {6,10}*480c
4-fold quotients : {3,10}*240, {6,5}*240b, {6,10}*240c, {6,10}*240d, {6,10}*240e, {6,10}*240f
8-fold quotients : {3,5}*120, {3,10}*120a, {3,10}*120b, {6,5}*120b, {6,5}*120c
16-fold quotients : {3,5}*60
60-fold quotients : {4,2}*16
120-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
2-fold covers : {12,20}*1920g, {24,10}*1920d, {12,10}*1920c, {12,20}*1920l, {24,10}*1920f
Permutation Representation (GAP) :
```s0 := ( 4, 6)( 8, 9)(10,11);;
s1 := ( 3, 4)( 5, 6)( 7, 8)(10,11);;
s2 := ( 1, 2)( 8,10)( 9,11);;
poly := Group([s0,s1,s2]);;

```
Finitely Presented Group Representation (GAP) :
```F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;

```
Permutation Representation (Magma) :
```s0 := Sym(11)!( 4, 6)( 8, 9)(10,11);
s1 := Sym(11)!( 3, 4)( 5, 6)( 7, 8)(10,11);
s2 := Sym(11)!( 1, 2)( 8,10)( 9,11);
poly := sub<Sym(11)|s0,s1,s2>;

```
Finitely Presented Group Representation (Magma) :
```poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s0*s1*s2*s1*s0*s1,
s2*s0*s1*s2*s1*s2*s1*s2*s0*s1*s2*s0*s1*s2*s1*s2*s1*s2*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;

```
References : None.
to this polytope